首页> 外文期刊>Journal of Molecular Biology >Structure and molecular dynamics simulation of archaeal prefoldin: The molecular mechanism for binding and recognition of nonnative substrate proteins
【24h】

Structure and molecular dynamics simulation of archaeal prefoldin: The molecular mechanism for binding and recognition of nonnative substrate proteins

机译:古细菌前折叠蛋白的结构和分子动力学模拟:结合和识别非天然底物蛋白的分子机制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Prefoldin (PFD) is a heterohexameric molecular chaperone complex in the eukaryotic cytosol and archaea with a jellyfish-like structure containing six long coiled-coil tentacles. PFDs capture protein folding intermediates or unfolded polypeptides and transfer them to group II chaperonins for facilitated folding. Although detailed studies on the mechanisms for interaction with unfolded proteins or cooperation with chaperonins of archaeal PFD have been performed, it is still unclear how PFD captures the unfolded protein. In this study, we determined the X-ray structure of Pyrococcus horikoshii OT3 PFD (PhPFD) at 3.0 angstrom resolution and examined the molecular mechanism for binding and recognition of nonnative substrate proteins by molecular dynamics (MD) simulation and mutation analyses. PhPFD has a jellyfish-like structure with six long coiled-coil tentacles and a large central cavity. Each subunit has a hydrophobic groove at the distal region where an unfolded substrate protein is bound. During MD simulation at 330 K, each coiled coil was highly flexible, enabling it to widen its central cavity and capture various normative proteins. Docking MD simulation of PhPFD with unfolded insulin showed that the beta subunit is essentially involved in substrate binding and that the alpha subunit modulates the shape and width of the central cavity. Analyses of mutant PhPFDs with amino acid replacement of the hydrophobic residues of the P subunit in the hydrophobic groove have shown that beta Ile107 has a critical role in forming the hydrophobic groove. (C) 2007 Elsevier Ltd. All rights reserved.
机译:Prefoldin(PFD)是真核细胞溶胶和古细菌中的异六聚体分子伴侣复合物,具有类似于水母的结构,包含六个长的卷曲螺旋触手。 PFD捕获蛋白质折叠中间体或未折叠的多肽,然后将其转移至II组伴侣蛋白中以促进折叠。尽管已进行了与未折叠蛋白质相互作用或与古菌PFD伴侣蛋白协同作用机理的详细研究,但仍不清楚PFD如何捕获未折叠蛋白质。在这项研究中,我们确定了火球菌OT3 PFD(PhPFD)在3.0埃分辨率下的X射线结构,并通过分子动力学(MD)模拟和突变分析研究了结合和识别非天然底物蛋白的分子机制。 PhPFD具有类似于水母的结构,带有六个长的盘绕触手和一个大的中央空腔。每个亚基在结合了未折叠底物蛋白的远端区域均具有疏水凹槽。在330 K的MD模拟过程中,每个盘绕的线圈都具有很高的柔韧性,使其能够扩大中心腔并捕获各种规范性蛋白质。 PhPFD与未折叠胰岛素的对接MD模拟显示,β亚基实质上参与底物结合,而α亚基调节中央腔的形状和宽度。对疏水性凹槽中P亚基的疏水残基进行氨基酸置换的突变型PhPFD的分析表明,βIle107在形成疏水性凹槽中具有关键作用。 (C)2007 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号