...
首页> 外文期刊>The journal of physical chemistry, C. Nanomaterials and interfaces >A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li-M (M = Si, Ge, Sn) Alloys
【24h】

A Comparative First-Principles Study of the Structure, Energetics, and Properties of Li-M (M = Si, Ge, Sn) Alloys

机译:Li-M(M = Si,Ge,Sn)合金的结构,能级和性能的比较第一性原理研究

获取原文
获取原文并翻译 | 示例
           

摘要

On the basis of density functional theory calculations, we first present a comparative study on the behavior of Li atoms in M (M = Si, Ge, and Sn) and evaluate how Li incorporation affects the electronic structure and bonding nature of the host lattices. We then discuss the energetics, structural evolution, and variations in electronic and mechanical properties of crystalline and amorphous Li-M alloys. Our calculations show that Li insertion is the least favorable in Si and the most favorable in Sn owing to its large effective interstitial space and softer matrix. Upon Li incorporation, the bonding strength of the host network is weakened, attributed to the transferred charge from Li. Li interstitials can migrate easily in all three host materials with a moderate migration barrier in Si and small barriers in Ge and Sn. Because of the cation repulsive interaction, Li atoms tend to remain isolated and well dispersed in M; also induced by this cationic nature is the charge redistribution toward Li, leading to the strong screening/shielding effect in Si, in which the excess charges are highly localized, and a relatively weaker effect in Sn. According to our mixing enthalpy calculations, alloying between Li and M is energetically favorable with Li-Sn alloys being the most stable, followed by Li-Ge and Li-Si alloys. On the basis of structural, electronic, and mechanical property analyses, we also demonstrate how the incorporation of Li atoms with increasing concentration leads to the disintegration of host networks and softening of the Li-M alloys, and associated with the more flexible lattices, the volume expansion at fully lithiated states are 434 (399)% (Si), 382 (353)% (Ge), and 305 (259)% (Sn) for amorphous (crystalline) Li-M alloys.
机译:在密度泛函理论计算的基础上,我们首先对Li原子在M(M = Si,Ge和Sn)中的行为进行比较研究,并评估Li的掺入如何影响主晶格的电子结构和键合性质。然后,我们讨论了晶体和非晶Li-M合金的能量,结构演变以及电子和机械性能的变化。我们的计算表明,Li插入由于其有效的间隙空间较大且基质较软,因此在Si中最不受欢迎,而在Sn中最有利。掺入锂后,由于锂的转移电荷,主机网络的结合强度减弱。 Li间隙可以在所有三种主体材料中轻松迁移,其中Si的迁移势垒适中,Ge和Sn的势垒小。由于阳离子之间的排斥作用,Li原子倾向于保持隔离状态,并很好地分散在M中。这种阳离子性质还引起电荷向Li的重新分布,从而导致Si中的强屏蔽/屏蔽效应,其中过量电荷高度局部化,而Sn中的效应相对较弱。根据我们的混合焓计算,Li和M之间的合金化在能量上是有利的,其中Li-Sn合金最稳定,其次是Li-Ge和Li-Si合金。在结构,电子和机械性能分析的基础上,我们还证明了随着浓度增加而引入的Li原子如何导致主体网络的分解和Li-M合金的软化,并与更灵活的晶格,对于非晶态(结晶)Li-M合金,完全锂化状态下的体积膨胀为434(399)%(Si),382(353)%(Ge)和305(259)%(Sn)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号