首页> 外文学位 >First-Principles Study of the Lithium-Sodium-Calcium-Nitrogen-Hydrogen System: Compound Structures and Hydrogen-Storage Properties.
【24h】

First-Principles Study of the Lithium-Sodium-Calcium-Nitrogen-Hydrogen System: Compound Structures and Hydrogen-Storage Properties.

机译:锂-钠-钙-氮-氢系统的第一性原理研究:化合物的结构和储氢性能。

获取原文
获取原文并翻译 | 示例

摘要

With the goal of finding new materials as a resource for alternative energy, various classes of hydrogen storage materials have been developed. One of the possible candidates is solid-state metal amide/imide. These chemically bounded solid-state materials will release hydrogen when heated and rehydrogenate upon an increase in pressure. Therefore, this practical requirement limits the operating temperature to between -40 to 80 °C and the pressure to between 1 to a few hundred bars. The main goal is to find new metal amide/imide materials within these specified thermodynamics ranges. Note that normally not only the thermodynamics but kinetics properties are also crucial. While a kinetics study would tell how fast hydrogen can be released and absorbed, this research focuses on the thermodynamics part only.;First-principle calculations are useful tools for predicting new materials structures and exploring hydrogen-released reactions. Since density functional theory (DFT) can provide the accuracy as small as quantum-mechanical level, it is used to calculate properties of these amide/imide materials. Other tools used in this research include: prediction of ground-state structures of some amide/imide materials has been explored by electrostatics-based calculation (PEGS), Grand Canonical Linear Programming Method (GCLP) is used to calculate allowed hydrogen-released reactions under the specified thermodynamics range, and zero-point vibrational energy is calculated by phonons calculations.;Here, all known and predicted crystal structures of materials in the Li-Na-Ca-N-H system are investigated in order to find the allowed hydrogen-released reactions.
机译:为了寻找新材料作为替代能源的资源,已经开发了各种类型的储氢材料。可能的候选之一是固态金属酰胺/酰亚胺。这些化学键合的固态材料在加热时会释放氢,并在压力增加时重新氢化。因此,该实际要求将工作温度限制在-40至80°C之间,并将压力限制在1至数百巴之间。主要目标是在这些指定的热力学范围内找到新的金属酰胺/酰亚胺材料。注意,通常不仅热力学而且动力学性质也至关重要。虽然动力学研究会告诉我们氢的释放和吸收速度,但是这项研究仅关注热力学部分。第一性原理计算是预测新材料结构和探索氢释放反应的有用工具。由于密度泛函理论(DFT)可以提供与量子力学水平一样小的精度,因此它可用于计算这些酰胺/酰亚胺材料的性能。这项研究中使用的其他工具包括:通过基于静电的计算(PEGS)探索了一些酰胺/酰亚胺材料的基态结构预测,采用大正则线性编程方法(GCLP)来计算在以下条件下允许的氢释放反应在规定的热力学范围内,并通过声子计算来计算零点振动能。此处,研究了Li-Na-Ca-NH系统中所有已知和预测的材料晶体结构,以找到允许的氢释放反应。

著录项

  • 作者

    Teeratchanan, Pattanasak.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.;Chemistry Inorganic.;Energy.
  • 学位 M.S.
  • 年度 2012
  • 页码 48 p.
  • 总页数 48
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:43:54

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号