【24h】

Structure of Aqueous Sodium Perchlorate Solutions

机译:高氯酸钠水溶液的结构

获取原文
获取原文并翻译 | 示例

摘要

Salt solutions have been the object of study of many scientists through history,but one of the most important findings came along when the Hofmeister series were discovered.Their importance arises from the fact that they influence the relative solubility of proteins,and solubility is directly related to one of today's holy grails:protein folding.In this work we characterize one of the more-destabilizing salts in the series,sodium perchlorate,by studying it as an aqueous solution at various concentrations ranging from 0.08 to 1.60 mol/L.Molecular dynamics simulations at room temperature permitted a detailed study of the organization of solvent and cosolvent,in terms of its radial distribution functions,along with the study of the structure of hydrogen bonds in the ions'solvation shells.We found that the distribution functions have some variations in their shape as concentration changes,but the position of their peaks is mostly unaffected.Regarding water,the most salient fact is the noticeable(although small)change in the second hydration shell and even beyond,especially for g_(O_w…O_w),showing that the locality of salt effects should not be restricted to considerations of only the first solvation shell.The perturbation of the second shell also appears in the study of the HB network,where the difference between the number of HBs around a water molecule and around the Na~+ cation gets much smaller as one goes from the first to the second solvation shell,yet the difference is not negligible.Nevertheless,the effect of the ions past their first hydration shell is not enough to make a noticeable change in the global HB network.The Kirkwood-Buff theory of liquids was applied to our system,in order to calculate the activity derivative of the cosolvent.This coefficient,along with a previously calculated preferential binding,allowed us to establish that if a folded AP peptide is immersed in the studied solution,becoming the solute,then increasing the salt concentration will make the helix more stable.
机译:盐溶液一直以来都是许多科学家研究的对象,但是最重要的发现之一是在发现霍夫迈斯特系列时出现的。其重要性在于它们影响蛋白质的相对溶解度,而溶解度直接相关到今天的圣旨之一:蛋白质折叠。在这项工作中,我们通过研究其在0.08至1.60 mol / L范围内的各种浓度下的水溶液,来表征该系列中一种更不稳定的盐-高氯酸钠。在室温下进行模拟可以对溶剂和助溶剂的径向分布函数进行详细研究,以及对离子溶剂壳中氢键的结构进行研究。我们发现分布函数有一些变化随浓度的变化而变化,但其峰的位置基本不受影响。关于水,最明显的事实是第二个水化壳中甚至更大的变化(尽管很小),特别是对于g_(O_w…O_w),这表明盐效应的局部性不应仅局限于第一个溶剂化壳的考虑。第二个壳的摄动在HB网络的研究中也出现了这样的现象,其中水分子周围和Na〜+阳离子周围的HBs数量之间的差异随着从第一个到第二个溶剂化壳的变化而变小,但是这种差异不可忽略但是,离子经过其第一个水合壳的影响不足以在全球HB网络中产生显着变化。我们将液体的Kirkwood-Buff液体理论应用到我们的系统中,以计算助溶剂的活性导数该系数连同先前计算的优先结合,使我们能够确定,如果将折叠的AP肽浸入研究的溶液中成为溶质,则增加盐浓度将使使螺旋线更稳定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号