首页> 外文期刊>The Journal of Chemical Physics >Reactions of gas-phase H atoms with atomically and molecularly adsorbed oxygen on Pt(111)
【24h】

Reactions of gas-phase H atoms with atomically and molecularly adsorbed oxygen on Pt(111)

机译:气相H原子与原子和分子吸附的氧在Pt(111)上的反应

获取原文
获取原文并翻译 | 示例
           

摘要

The interaction of gas-phase H atoms with ordered and disordered adlayers of atomic oxygen, hydroxyl, and molecular oxygen on Pt(111) surfaces was investigated by in situ mass spectrometry and post-reaction TPD (temperature programed desorption). Exposure of oxygen adlayers to gas-phase H atoms at 85 K leads to formation of H_2O via two consecutive hydrogenation reactions: H(g)+O(a)->OH(a) followed by H(g)+OH(a)->H_2O(g,a). Both reaction steps are highly exothermic, and nascent H_2O molecules partially escape into the gas phase before being thermally accommodated on the surface. Empty surface sites and hydrogen bonding promote thermalization of H_2O. Separate experiments performed with OH-covered Pt(111) surfaces reveal that the hydrogenation of hydroxyl is a slow reaction compared to the hydrogenation of atomic oxygen;additionally, the abstraction of H from OH by gas-phase D atoms, OH(a)+D(g)->O(a)+HD(g), was detected. Abstraction of H from adsorbed H_2O was not observed. Admission of gas-phase H atoms to O_2-covered Pt(111) surfaces at 85 K leads to the desorption of O_2 and H_2O. The thermodynamic stability of the HO_2 radical suggests that the reaction is initiated by hydrogenation of molecular oxygen, O_2(a)+H(g)->HO_2. The intermediate HO_2 either decomposes via dissociation of the HO-O bond, HO_2->OH(a)+O(a), finally leading to the formation of H_2O (approx85%), or via dissociation of the H_O_2 bond thus leading to desorption of O_2 (approx15%). The whole reaction sequence of formation and decomposition of HO_2 is fast compared to the formation of H_2O via hydrogenation of atomic oxygen and hydroxyl. The observed coverage dependence of the reaction kinetics indicates the dominance of hot-atom mediated reactions.
机译:通过原位质谱和反应后TPD(程序升温脱附)研究了气相H原子与Pt(111)表面上原子氧,羟基和分子氧有序和无序的加合层之间的相互作用。氧附加层在85 K下暴露于气相H原子导致通过两个连续的氢化反应形成H_2O:H(g)+ O(a)-> OH(a),然后是H(g)+ OH(a) -> H_2O(g,a)。这两个反应步骤都是高度放热的,新生的H_2O分子在被热容纳在表面之前会部分逸出进入气相。空的表面位点和氢键促进H_2O的热化。使用OH覆盖的Pt(111)表面进行的单独实验表明,与原子氧的氢化相比,羟基的氢化是一个缓慢的反应;此外,气相D原子OH(a)+从OH提取H检测到D(g)-> O(a)+ HD(g)。没有观察到从吸附的H_2O中提取H。气相H原子以85 K进入O_2覆盖的Pt(111)表面会导致O_2和H_2O解吸。 HO_2自由基的热力学稳定性表明该反应是由分子氧O_2(a)+ H(g)-> HO_2的氢化引发的。中间体HO_2要么通过HO-O键的解离,HO_2-> OH(a)+ O(a)分解,最终导致H_2O的形成(约85%),要么通过H_O_2键的解离而导致解吸O_2(约15%)。与通过原子氧和羟基的氢化形成H_2O相比,HO_2的形成和分解的整个反应顺序要快。观察到的反应动力学的覆盖依赖性表明了热原子介导的反应的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号