首页> 外文期刊>Plant physiology >A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance
【24h】

A Single Amino-Acid Substitution in the Sodium Transporter HKT1 Associated with Plant Salt Tolerance

机译:与植物耐盐性相关的钠转运蛋白HKT1中的单个氨基酸取代

获取原文
获取原文并翻译 | 示例
           

摘要

A crucial prerequisite for plant growth and survival is the maintenance of potassium uptake, especially when high sodium surrounds the root zone. The Arabidopsis HIGH-AFFINITY K+ TRANSPORTER1 (HKT1), and its homologs in other salt-sensitive dicots, contributes to salinity tolerance by removing Na+ from the transpiration stream. However, TsHKT1; 2, one of three HKT1 copies in Thellungiella salsuginea, a halophytic Arabidopsis relative, acts as a K+ transporter in the presence of Na+ in yeast (Saccharomyces cerevisiae). Amino-acid sequence comparisons indicated differences between TsHKT1; 2 and most other published HKT1 sequences with respect to an Asp residue (D207) in the second pore-loop domain. Two additional T. salsuginea and most other HKT1 sequences contain Asn (N) in this position. Wild-type TsHKT1; 2 and altered AtHKT1 (AtHKT1(N-D)) complemented K+-uptake deficiency of yeast cells. Mutant hkt1-1 plants complemented with both AtHKT1(N-D) and TsHKT1; 2 showed higher tolerance to salt stress than lines complemented by the wild-type AtHKT1. Electrophysiological analysis in Xenopus laevis oocytes confirmed the functional properties of these transporters and the differential selectivity for Na+ and K+ based on the N/D variance in the pore region. This change also dictated inward-rectification for Na+ transport. Thus, the introduction of Asp, replacing Asn, in HKT1-type transporters established altered cation selectivity and uptake dynamics. We describe one way, based on a single change in a crucial protein that enabled some crucifer species to acquire improved salt tolerance, which over evolutionary time may have resulted in further changes that ultimately facilitated colonization of saline habitats.
机译:植物生长和存活的关键先决条件是维持钾的吸收,特别是当高钠包围根部区域时。拟南芥高钾钾转运蛋白1(HKT1)及其在其他盐敏感双子叶植物中的同系物,通过从蒸腾流中去除Na +来提高耐盐性。但是,TsHKT1;参见图2,盐生拟南芥亲缘种Sllungiella salsuginea中的三个HKT1拷贝之一,在酵母(酿酒酵母)中存在Na +时充当K +转运蛋白。氨基酸序列比较表明TsHKT1之间存在差异;关于第二孔-环结构域中的Asp残基(D207)的图2和大多数其他公开的HKT1序列。两条另外的鼠尾草T. salsuginea和大多数其他HKT1序列在此位置含有Asn(N)。野生型TsHKT1; 2和改变的AtHKT1(AtHKT1(N-D))补充酵母细胞的K +摄取不足。突变的hkt1-1植物与AtHKT1(N-D)和TsHKT1互补;图2显示了比野生型AtHKT1互补的品系对盐胁迫的耐受性更高。非洲爪蟾卵母细胞的电生理分析证实了这些转运蛋白的功能特性以及基于孔区域N / D变化的Na +和K +的选择性差异。这种变化还决定了Na +运输的向内整流。因此,在HKT1型转运蛋白中引入Asp替代Asn建立了改变的阳离子选择性和吸收动力学。我们基于一种关键蛋白质的单一变化来描述一种方法,该变化使一些十字花科物种获得了更高的耐盐性,随着时间的推移,这可能导致进一步的变化,最终促进了盐碱生境的定殖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号