首页> 外文期刊>Physical Review, A. Atomic, molecular, and optical physics >Theory of intense-field dynamic alignment and high-order harmonic generation from coherently rotating molecules and interpretation of intense-field ultrafast pump-probe experiments
【24h】

Theory of intense-field dynamic alignment and high-order harmonic generation from coherently rotating molecules and interpretation of intense-field ultrafast pump-probe experiments

机译:相干旋转分子产生高场动态对准和高次谐波的理论以及高场超快泵浦探针实验的解释

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

A quantum theory of intense-field pump-probe experiments proposed by us recently [F. H. M. Faisal et al., Phys. Rev. Lett. 98, 143001 (2007) and F. H. M. Faisal and A. Abdurrouf, Phys. Rev. Lett. 100, 123005 (2008)] is derived here fully and applied to investigate the phenomena of dynamic alignment and high-order harmonic generation (HHG) from coherently rotating linear molecules. The theory is developed from the basic quantum transition amplitude for the HHG and used to relate the Fourier transform (FT) of the expectation value of the dipole operator to the rate of emission of the HHG photons. It permits us to give analytical expressions for the HHG signals and their simultaneous dependence on the two externally available control parameters-the delay-time, t(d), between the pump and the probe pulse, and the relative angle, alpha, between their polarizations. A relation between the basic "one-molecule" and the macroscopic "many-molecule" HHG signals is obtained from the phase-matching condition for HHG in an ideal medium. The requirement for the coherent HHG signal and the "elastic" molecular transition, in contrast to the "inelastic" transitions and the "hyper-Raman" emission, is discussed. The effect of the "delayed" probe pulse on the dynamic alignment induced by the pump-pulse, the mean rotational energy of the molecule during the period between the pump and the probe pulse, as well as a method of estimating the effective temperature of the molecules are analyzed. A "revival theorem" on the number of fractional "revivals," equal to the lowest power of the "cosine operator" in the Hamiltonian of the system, times the maximum powers of the "cosine-moments" present in the signal, is derived and used to interpret the observed fractional revivals and their relative phases. A "magic" polarization angle alpha(c) = arctan root 2 approximate to 55 degrees, at which the signals for all td approach each other closely, is identified as a generic signature of a sigma(g) symmetry of the active orbital. Similarly, the presence of a "crossing neighborhood" near alpha(c) is shown to be a generic signature of an active pi(g) orbital. At an operational angle alpha(c) approximate to 55 degrees in the laboratory, a steady emission of high-order harmonic radiation from coherently rotating molecules with sigma(g) orbital symmetry (e.g., N-2) can be obtained. Finally, explicit numerical calculations are performed at specific experimental parameter values in the time domain as well as in the frequency domain. The results well reproduce all the salient features of the experimental observations for N-2 and O-2, and provide a unified theoretical interpretation of the same.
机译:我们最近提出的强场泵浦探针实验的量子理论[F. H.M.Faisal等人,《物理学报》牧师98,143001(2007)和F. H. M. Faisal和A. Abdurrouf,Phys。牧师100,123005(2008)]在这里被完全推导,并被用于研究相干旋转的线性分子的动态排列和高次谐波产生(HHG)现象。该理论是从HHG的基本量子跃迁幅度发展而来的,用于将偶极子算符的期望值的傅立叶变换(FT)与HHG光子的发射速率相关联。它使我们能够给出HHG信号的解析表达式,以及它们同时依赖于两个外部可用控制参数-泵和探测脉冲之间的延迟时间t(d)以及它们之间的相对角度α极化。根据理想介质中HHG的相位匹配条件,可以获得基本的“单分子”和宏观的“多分子” HHG信号之间的关系。与“非弹性”跃迁和“高拉曼”发射相反,讨论了对相干HHG信号和“弹性”分子跃迁的要求。 “延迟的”探测脉冲对泵浦脉冲引起的动态排列的影响,在泵浦和探测脉冲之间的时间段内分子的平均旋转能,以及估算分子的有效温度的方法分子被分析。得出分数“复活”数量的“复活定理”,等于系统哈密顿量中“余弦算子”的最低乘积,乘以信号中“余弦矩”的最大乘积并用来解释观察到的部分复兴及其相对阶段。大约55度的“魔术”极化角alpha(c)=反正切根2,所有td的信号都彼此接近,在该角度处被识别为活动轨道sigma(g)对称性的一般特征。类似地,显示在alpha(c)附近的“交叉邻域”是活动pi(g)轨道的一般特征。在实验室中,在大约55度的工作角α(c)处,可以从具有sigma(g)轨道对称性(例如N-2)的相干旋转分子中稳定发射高阶谐波辐射。最后,在时域和频域中的特定实验参数值处执行显式数值计算。结果很好地再现了N-2和O-2实验观察的所有显着特征,并为它们提供了统一的理论解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号