首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >In situ Auger electron spectroscopy study of atomic layer deposition: Growth initiation and interface formation reactions during ruthenium ALD on Si-H, SiO2, and HfO2 surfaces
【24h】

In situ Auger electron spectroscopy study of atomic layer deposition: Growth initiation and interface formation reactions during ruthenium ALD on Si-H, SiO2, and HfO2 surfaces

机译:原子层沉积的原位俄歇电子能谱研究:钌ALD在Si-H,SiO2和HfO2表面上的生长引发和界面形成反应

获取原文
获取原文并翻译 | 示例
           

摘要

Growth initiation and film nucleation in atomic layer deposition (ALD) is important for controlling interface composition and achieving atomic-scale films with well-defined composition. Ruthenium ALD is studied here using ruthenocene and oxygen as reactants, and growth initiation and nucleation are characterized on several different growth surfaces, including SiO2, HfO2, and hydrogen terminated silicon, using on-line Auger electron spectroscopy and ex-situ X-ray photoelectron spectroscopy. The time needed to reach the full growth rate (typically similar to 1 A per deposition cycle) is found to increase as the surface energy of the starting surface (determined from contact angle measurements) decreased. Growth starts more readily on HfO2 than on SiO2 or Si-H surfaces, and Auger analysis indicates distinct differences in surface reactions on the various surfaces during film nucleation. Specifically, surface oxygen is consumed during ruthenocene exposure, so the nucleation rate will depend on the availability of oxygen and the energetics of surface oxygen bonding on the starting substrate surface.
机译:原子层沉积(ALD)中的生长引发和膜成核作用对于控制界面组成和获得具有明确定义的组成的原子级膜非常重要。此处使用钌茂金属和氧气作为反应物研究了钌ALD,并使用在线俄歇电子能谱和非原位X射线光电子技术在几种不同的生长表面(包括SiO2,HfO2和氢封端的硅)上表征了生长引发和成核光谱学。发现达到完全生长速率(通常类似于每个沉积周期1 A)所需的时间随着起始表面的表面能(由接触角测量确定)的降低而增加。在HfO2上的生长比在SiO2或Si-H表面上的生长更容易,并且俄歇分析表明在薄膜成核过程中,不同表面上的表面反应存在明显差异。具体而言,在钌茂金属暴露期间会消耗表面氧气,因此成核速率将取决于氧气的可用性以及起始基板表面上表面氧键合的能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号