首页> 外文期刊>Analytical chemistry >Deconvolution of Concentration Recordings at Live Cell Preparations via Shape Error Optimization
【24h】

Deconvolution of Concentration Recordings at Live Cell Preparations via Shape Error Optimization

机译:通过形状误差优化对活细胞制备中的浓度记录进行反卷积

获取原文
获取原文并翻译 | 示例
       

摘要

In many fields of science and engineering including several areas in analytical chemistry, deconvolution needs to be performed on measured data to extract meaningful information. This situation arises when a variable of interest has to be indirectly estimated from a measurable quantity that depends on this variable in some known manner. This dependence, called the "forward problem", has to be computationally undone to obtain the information sought from the experimental results. Solving this "inverse problem" requires deconvolution whenever the forward problem involves convolution. Despite its ubiquitous importance, however, performance of the method-ologies used for deconvolution remains often unsatisfactory. An example is in bioanalytical applications where microsensing at live preparations is performed to obtain information on biological transport. It is in this context that a novel approach to solve inverse problems, shape error optimization, is proposed and tested in this work. The experimental paradigm addressed is in the area of multidrug resistance (MDR) in cancer that gives rise to passive and active drug efflux from cells. Doxorubicin (DOX) concentration is monitored with a carbon fiber microelectrode in vitro at close proximity to a monolayer of cells expressing MDR. The measured local concentration is the result of convolution of cellular efflux with the impulse response of diffusion in the extracellular medium. Hence, estimating DOX efflux, which is the biologically meaningful information, leads to a deconvolution problem. Performance of deconvolution via shape error optimization is compared with that of two conventional techniques: discrete Fourier transform and square error optimization. The results obtained are also applicable to other areas of science and engineering where deconvolution is commonly used for processing experimental data.
机译:在科学和工程学的许多领域,包括分析化学中的多个领域,需要对测量数据进行反卷积以提取有意义的信息。当必须以某种已知的方式从依赖于该变量的可测量量间接估算目标变量时,就会出现这种情况。为了获得从实验结果中寻求的信息,必须取消这种称为“正向问题”的依赖性。每当正向问题涉及卷积时,解决该“逆问题”都需要进行反卷积。尽管其无处不在的重要性,但是用于反卷积的方法论的性能通常仍然不能令人满意。一个例子是在生物分析应用中,在现场准备工作中进行微传感以获得有关生物转运的信息。在这种情况下,提出了一种解决逆问题的新方法,即形状误差优化,并在这项工作中进行了测试。解决的实验范式是癌症中的多药耐药性(MDR)领域,它引起细胞的被动和主动药物外排。用碳纤维微电极在离表达MDR的细胞单层非常近的地方监测阿霉素(DOX)的浓度。测得的局部浓度是细胞外排与卷积在细胞外介质中的冲激响应卷积的结果。因此,估计具有生物学意义的信息DOX外流会导致解卷积问题。将通过形状误差优化的反卷积性能与两种常规技术进行了比较:离散傅立叶变换和平方误差优化。所获得的结果还适用于反卷积通常用于处理实验数据的其他科学和工程领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号