首页> 外文期刊>ACS applied materials & interfaces >Systematic Generation, Analysis, and Characterization of 3D Micro-architected Metamaterials
【24h】

Systematic Generation, Analysis, and Characterization of 3D Micro-architected Metamaterials

机译:3D微结构超材料的系统生成,分析和表征

获取原文
获取原文并翻译 | 示例
           

摘要

Controlling the unit-cell topology of micro lattice structures can enable the customization of effective anisotropic material properties. A wide range of properties can be obtained by varying connectivity within the unit cell, which then can be further used to optimize structures specific to applications. A methodology for a systematic generation of microlattice structures is presented that focuses on controlling discrete topology instead of average porosity (as is done in conventional porous media). An algorithm is developed to create valid lattice structures without redundancies from a given set of template nodes. A set of possible permutations of structures from an eight-node cubic octant of a unit cell are generated for evaluation of the degree of anisotropy. Generic models are developed to calculate the effective thermal and mechanical properties as an effect of topology and porosity of the micro-architected structure. The thermal and mechanical anisotropies are investigated for the effective properties of micro-architected materials. A few of the structured materials are fabricated using 3D printing technology and their effective properties characterized. Structures are represented as graphs in the form of adjacency matrices. Effective thermal conductivity is analyzed using a resistance network model, and effective stiffness is evaluated using a self-consistent elastic model, respectively. A total of 160 000 structures are generated and compared to porous-metal foams in which porosity is one of the design variables. The results show that it is possible to obtain a wide range of properties spanning more than an order of magnitude in comparison to porous-metal structures. Structures with a maximum anisotropy ratios of 7.1 and 8.2 are observed for thermal and mechanical properties, respectively. Preliminary experimental results validated the anisotropy ratio for the thermal conductivity and stiffness.
机译:控制微晶格结构的晶胞拓扑可以实现有效各向异性材料特性的定制。通过改变晶胞内的连通性,可以获得广泛的性能,然后可以将其进一步用于优化特定于应用的结构。提出了一种系统生成微晶格结构的方法,该方法侧重于控制离散拓扑而不是平均孔隙率(如在常规多孔介质中所做的那样)。开发了一种算法,以创建有效的晶格结构,而没有给定模板节点集的冗余。产生了来自晶胞的八节点立方八分之一体的一组可能的结构排列,以评估各向异性程度。开发通用模型以计算有效的热和机械性能,这是微结构结构的拓扑和孔隙率的影响。研究了热和机械各向异性对微结构材料的有效性能的影响。某些结构化材料是使用3D打印技术制造的,其有效特性得以表征。结构以邻接矩阵的形式表示为图。使用电阻网络模型分析有效导热系数,并分别使用自洽弹性模型评估有效刚度。总共生成了16万种结构,并与多孔性是设计变量之一的多孔金属泡沫进行了比较。结果表明,与多孔金属结构相比,可以获得超过一个数量级的宽范围的性能。分别观察到最大各向异性比为7.1和8.2的结构的热和机械性能。初步实验结果验证了导热率和刚度的各向异性比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号