...
首页> 外文期刊>Combustion theory and modelling >Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics
【24h】

Numerical investigation of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics

机译:具有链支化动力学的一维Chapman-Jouguet爆轰不稳定性的数值研究

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics of one-dimensional Chapman-Jouguet detonations driven by chain-branching kinetics is studied using numerical simulations. The chemical kinetic model is based on a two-step reaction mechanism, consisting of a thermally neutral induction step followed by a main reaction layer, both governed by Arrhenius kinetics. Results are in agreement with previous studies that detonations become unstable when the induction zone dominates over the main reaction layer. To study the nonlinear dynamics, a bifurcation diagram is constructed from the computational results. Similar to previous results obtained with a single-step Arrhenius rate law, it is shown that the route to higher instability follows the Feigenbaum route of a period-doubling cascade. The corresponding Feigenbaum number, defined as the ratio of intervals between successive bifurcations, appears to be close to the universal value of 4.669. The present parametric analysis determines quantitatively the relevant non-dimensional parameter chi defined as the activation energy for the induction process epsilon(1) multiplied by the ratio of the induction length Delta(I) to the reaction length Delta(R). The reaction length Delta(R) is estimated by the inverse of the maximum thermicity (1/sigma(over dot)(max)) multiplied by the Chapman-Jouguet particle velocity u(CJ). An attempt is made to provide a physical explanation of this stability parameter from the coherence concept. A series of computations is carried out to obtain the neutral stability curve for one-dimensional detonation waves over a wide range of chemical parameters for the model. These results are compared with those obtained from numerical simulations using detailed chemistry for some common gaseous combustible mixtures.
机译:使用数值模拟研究了由链支化动力学驱动的一维Chapman-Jouguet爆轰动力学。化学动力学模型基于两步反应机理,包括热中性诱导步骤和随后的主反应层,两者均由阿伦尼乌斯动力学控制。结果与先前的研究一致,即当感应区在主反应层上方占主导时,爆炸会变得不稳定。为了研究非线性动力学,根据计算结果构造了一个分叉图。与以前通过单步阿里尼乌斯速率定律获得的结果相似,研究表明,达到更高不稳定性的途径遵循倍增级联的费根鲍姆途径。相应的费根鲍姆数定义为连续分叉之间的间隔比率,似乎接近通用值4.669。本参数分析定量地确定了相关的无量纲参数chi,定义为感应过程epsilon(1)的活化能乘以感应长度Delta(I)与反应长度Delta(R)之比。反应长度Delta(R)由最大热度(1 / sigma(over dot)(max))的倒数乘以Chapman-Jouguet粒子速度u(CJ)来估算。试图从相干性概念提供对该稳定性参数的物理解释。进行了一系列计算,以在模型的广泛化学参数范围内获得一维爆轰波的中性稳定性曲线。将这些结果与使用详细化学方法对某些常见气态可燃混合物进行数值模拟所获得的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号