首页> 外文期刊>Computers & Fluids >A high-order hybrid finite difference-finite volume approach with application to inviscid compressible flow problems: A preliminary study
【24h】

A high-order hybrid finite difference-finite volume approach with application to inviscid compressible flow problems: A preliminary study

机译:高阶混合有限差分-有限体积方法及其在无粘性可压缩流动问题中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

A class of hybrid finite difference-finite volume (FD-FV) operators is recently developed as building blocks to solve one dimensional hyperbolic conservation laws when the solutions are smooth. This method differs from conventional finite difference (FD) or finite volume (FV) schemes in that both nodal values and cell-averaged values are considered as dependent variables and they are evolved in time. Under this framework, the 1D FD-FV methods: (1) are numerically conservative for cell averages; (2) have straightforward extension to high-order accuracy; and (3) have superior spatial accuracy property compared to most conventional FD or FV methods. This work extends the FD-FV approach in two aspects. The first extension is a WENO-type stabilization to enhance the nonlinear stability of sample high-order 1D FD-FV operators. In particular, numerical results show that when the solutions are smooth, the optimal order of accuracy (fifth-order) is achieved by the stabilized fourth-order FD-FV method; and it is also capable to handle problems with strongly dis-continuous solutions. The second part of the paper extends a second-order FD-FV method to two-dimensional smooth problems. Both Cartesian grids and unstructured (triangular) grids are considered. In multiple dimensions, there are different choices of the collocation points of the nodal values, and they lead to different FD-FV schemes. This work develops a node-centered FD-FV scheme and an edge-centered FD-FV scheme on each type of grids, and their numerical performance are assessed and compared by solving benchmark flow problems with smooth solutions. In particular, the numerical examples confirm that the superior spatial accuracy property of the 1D FD-FV operators carries to two space dimensions on Cartesian grids. The present work focuses on two space dimensions, but the methodology extends naturally to three-dimensional Cartesian grids and tetrahedral grids.
机译:最近开发了一类混合有限差分-有限体积(FD-FV)算子作为构建基块,以在解决方案平滑时求解一维双曲守恒律。此方法与常规的有限差分(FD)或有限体积(FV)方案不同,因为节点值和单元平均值均被视为因变量,并且它们随时间变化。在此框架下,一维FD-FV方法:(1)对单元平均数值保守。 (2)直接扩展到高阶精度; (3)与大多数传统的FD或FV方法相比,具有更高的空间准确性。这项工作从两个方面扩展了FD-FV方法。第一个扩展是WENO型稳定化,可增强样本高阶一维FD-FV算子的非线性稳定性。特别是,数值结果表明,当解是平滑的时,通过稳定的四阶FD-FV方法可以获得最佳的精度(五阶)。并且它还能够使用强不连续的解决方案来处理问题。本文的第二部分将二阶FD-FV方法扩展到二维光滑问题。同时考虑了笛卡尔网格和非结构化(三角形)网格。在多个维度上,节点值的并置点有不同的选择,它们会导致不同的FD-FV方案。这项工作在每种类型的网格上开发了一个以节点为中心的FD-FV方案和一个以边缘为中心的FD-FV方案,并通过用平滑解解决基准流问题来评估和比较它们的数值性能。尤其是,这些数值示例证实,一维FD-FV算子的出色空间精度特性在笛卡尔网格上具有两个空间维。目前的工作集中在两个空间维度上,但是该方法自然地扩展到三维笛卡尔网格和四面体网格。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号