首页> 外文期刊>Computational statistics & data analysis >Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping
【24h】

Empirical Bayes and Fully Bayes procedures to detect high-risk areas in disease mapping

机译:经验贝叶斯和完全贝叶斯程序可在疾病绘图中检测高风险区域

获取原文
获取原文并翻译 | 示例

摘要

Disease mapping studies have experienced an enormous development in the last twenty years. Both an Empirical Bayes (EB) and a Fully Bayes (FB) approach have been used for smoothing purposes. However, an excess of smoothing might hinder the detection of true high-risk areas. Identifying these extreme regions minimizing the misclassification of background or normal areas, and then, avoiding false alarms is crucial in epidemiology. Bayesian decision rules, based on the posterior distribution of the relative risks, have been investigated for this task, but no similar studies have been conducted under the EB approach. Within this framework, second order correct estimators of the MSE of the log-relative risk predictor can be used to build appropriate confidence intervals for the relative risks. Their ability to detect high-risk areas is investigated through a simulation study using the geographical structure of the well-known Scottish lip cancer data. Bayesian credibility intervals and decision rules, based on the posterior distribution of the relative risks, are also investigated to check if any of the approaches outperforms the others when classifying high-risk regions. The conclusion is that Bayesian decision rules, exploiting the posterior distribution of the relative risks, are more powerful to detect high-risk areas than EB confidence intervals, but no general rules can be defined as a global criterion to be routinely applied in every real setting.
机译:过去二十年来,疾病作图研究经历了巨大的发展。经验贝叶斯(EB)和完全贝叶斯(FB)方法都已用于平滑目的。但是,过度的平滑可能会阻碍对真正的高风险区域的检测。识别这些极端区域可最大程度地减少背景或正常区域的错误分类,然后避免误报在流行病学中至关重要。已经针对此任务调查了基于相对风险的后验分布的贝叶斯决策规则,但是在EB方法下尚未进行类似的研究。在此框架内,对数相对风险预测器的MSE的二阶正确估计器可用于为相对风险建立适当的置信区间。通过使用著名的苏格兰唇癌数据的地理结构进行的模拟研究,研究了它们检测高危区域的能力。基于相对风险的后验分布,还研究了贝叶斯可信区间和决策规则,以检查在对高风险区域进行分类时是否有任何一种方法优于其他方法。结论是,利用相对风险的后验分布的贝叶斯决策规则比EB置信区间更有效地检测高风险区域,但是不能将通用规则定义为在每个实际环境中常规应用的全局准则。 。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号