首页> 外文期刊>Journal of Tribology >A fracture mechanics approach to the prediction of tool wear in dry high-speed machining of aluminum cast alloys - Part 1: Model development
【24h】

A fracture mechanics approach to the prediction of tool wear in dry high-speed machining of aluminum cast alloys - Part 1: Model development

机译:断裂力学方法预测铝铸造合金干式高速加工中的刀具磨损-第1部分:模型开发

获取原文
获取原文并翻译 | 示例
           

摘要

The utilization of cast aluminum alloys in automotive industry continues to rise because of consumer demand for a future generation of vehicles that will offer excellent fuel efficiency and emissions reduction, without compromising safety, performance, or comfort. Unlike wrought aluminum alloys, the cutting speed for cast aluminum alloys is considerably restricted due to the detrimental effect of the alloy's silicon constituencies on tool life. In the present study, a new wear model is developed for tool-life management and enhancement, in a high-speed machining environment. The fracture-mechanics-based model requires normal and tangential stresses, acting on the flank of the cutting tool, as input data. Analysis of the subsurface crack propagation in the cobalt binder of cemented carbide cutting tool material is performed using a finite element (FE) model of the tool-workpiece sliding contact. The real microstructure of cemented carbide is incorporated into the FE model, and elastic-plastic properties of cobalt, defined by continuum theory of crystal plasticity are introduced. The estimation of the crack propagation rate is then used to predict the wear rate of the cutting tool. The model allows the microstructural characteristics of the cutting tool and workpiece material, as well as the tool's loading conditions to be taken into consideration. Analysis of the results indicates that the interaction between the alloy's hard silicon particles and the surface of the cutting tool is most detrimental to tool life. The fatigue wear of the cutting tool is shown to be directly proportional to the silicon content of the alloy, silicon grain size, and to the tool's loading conditions.
机译:由于消费者对下一代汽车的需求不断增长,铸造铝合金在汽车工业中的使用率不断提高,这些汽车将提供出色的燃油效率和减排,同时又不影响安全性,性能或舒适性。与锻造铝合金不同,铸造铝合金的切削速度由于合金硅含量对刀具寿命的不利影响而受到很大限制。在本研究中,开发了一种新的磨损模型,用于在高速加工环境中管理和提高刀具寿命。基于断裂力学的模型需要作用在切削刀具侧面的法向和切向应力作为输入数据。使用工具-工件滑动接触的有限元(FE)模型对硬质合金切削刀具材料的钴粘合剂中的次表面裂纹扩展进行了分析。将硬质合金的真实微观结构纳入有限元模型,并介绍了由晶体可塑性连续理论定义的钴的弹塑性性能。裂纹扩展速率的估计然后用于预测切削工具的磨损速率。该模型可以考虑切削刀具和工件材料的微观结构特征,以及刀具的加载条件。对结果的分析表明,合金的硬硅颗粒与切削刀具表面之间的相互作用对刀具寿命最不利。切削工具的疲劳磨损显示为与合金中的硅含量,硅晶粒尺寸以及工具的负载条件成正比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号