首页> 外文会议>TRIB-vol.16; American Society of Mechanical Engineers(ASME) International Mechanical Engineering Congress and Exposition; 20051105-11; Orlando,FL(US) >A FRACTURE MECHANICS APPROACH TO THE PREDICTION OF TOOL WEAR IN DRY HIGH SPEED MACHINING OF ALUMINUM CAST ALLOYS-PART 1: MODEL DEVELOPMENT
【24h】

A FRACTURE MECHANICS APPROACH TO THE PREDICTION OF TOOL WEAR IN DRY HIGH SPEED MACHINING OF ALUMINUM CAST ALLOYS-PART 1: MODEL DEVELOPMENT

机译:预测铝合金铸件干式高速干法刀具磨损的断裂力学方法-部分1:模型开发

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The analysis of the mechanism of cutting tool wear in high speed machining of cast aluminum alloys is conducted in this research work. The result of analysis indicates that the interaction between the hard silicon constituencies of the alloy and the surface of the cutting tool is the most detrimental to tool life. The wear of the cutting tool in such interactions, governed by fatigue wear mechanism, is directly proportional to silicon content of the alloy, silicon grain size and to the tool's loading conditions. In order to predict the tool wear in machining aluminum cast alloys, a new wear model is developed. The fracture mechanics approach in wear rate estimation is implemented in this model. As an input data for the tool wear modeling, the normal and tangential stresses, acting on the flank of cutting tool are used. The fracture mechanics analysis of the subsurface crack propagation in the cobalt binder of cemented carbide cutting tool material is performed using a finite element (FE) model of the tool-workpiece sliding contact. The real microstructure of cemented carbide is incorporated in the FE model of tool-workpiece contact, and elastic-plastic properties of cobalt, defined by continuum theory of crystal plasticity are introduced in the model by UMAT subroutine of the ABAQUS~® FE software. The crack propagation rate, determined from FE modeling, is used then in the model of cutting tool wear, developed in this work. This model is capable to predict the wear rate of cutting tool, base on the microstructural characteristics of the cutting tool and workpiece material and the tool's loading conditions. The model can be used for cutting tool life assessment and management in high speed machining of Al-Si alloys in an industrial setting.
机译:本研究工作分析了铸造铝合金高速加工中切削刀具的磨损机理。分析结果表明,合金的硬硅成分与切削刀具表面之间的相互作用对刀具寿命最不利。在这种相互作用中,切削刀具的磨损由疲劳磨损机理决定,与合金中的硅含量,硅晶粒尺寸以及刀具的加载条件成正比。为了预测加工铝铸合金中的刀具磨损,开发了一种新的磨损模型。该模型采用了磨损率估算中的断裂力学方法。作为刀具磨损建模的输入数据,使用作用在切削刀具侧面的法向应力和切向应力。使用工具-工件滑动接触的有限元(FE)模型对硬质合金切削刀具材料的钴粘结剂中的表面下裂纹扩展进行了断裂力学分析。硬质合金的真实微观结构被包含在工具-工件接触的有限元模型中,而钴的弹塑性特性是由结晶可塑性的连续性理论定义的,并通过ABAQUS〜®FE软件的UMAT子程序引入了模型。根据有限元建模确定的裂纹扩展速率,然后用于本工作开发的刀具磨损模型中。该模型能够基于切削刀具和工件材料的微观结构特征以及刀具的加载条件来预测切削刀具的磨损率。该模型可用于工业环境中高速加工Al-Si合金时的刀具寿命评估和管理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号