首页> 外文期刊>Journal of Mathematical Analysis and Applications >Operators of harmonic analysis in weighted spaces with non-standard growth
【24h】

Operators of harmonic analysis in weighted spaces with non-standard growth

机译:具有非标准增长的加权空间中的谐波分析算子

获取原文
获取原文并翻译 | 示例

摘要

Last years there was increasing an interest to the so-called function spaces with non-standard growth, known also as variable exponent Lebesgue spaces. For weighted such spaces on homogeneous spaces, we develop a certain variant of Rubio de Francia's extrapolation theorem. This extrapolation theorem is applied to obtain the boundedness in such spaces of various operators of harmonic analysis, such as maximal and singular operators, potential operators, Fourier multipliers, dominants of partial sums of trigonometric Fourier series and others, in weighted Lebesgue spaces with variable exponent. There are also given their vector-valued analogues.
机译:近年来,人们对具有非标准增长的所谓函数空间(也称为可变指数Lebesgue空间)的兴趣日益浓厚。对于同质空间上的加权此类空间,我们开发了卢比奥·德·弗朗西亚外推定理的某些变型。此外推定理可用于在具有可变指数的加权Lebesgue空间中,在各种谐波分析算子(例如最大和奇异算子,势算子,傅立叶乘数,三角傅里叶级数的部分和的显性)的空间中获得有界性。 。还提供了其向量值类似物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号