首页> 外文期刊>Journal of Sound and Vibration >Application of the arc-length method in nonlinear frequency response
【24h】

Application of the arc-length method in nonlinear frequency response

机译:弧长法在非线性频率响应中的应用

获取原文
获取原文并翻译 | 示例

摘要

Several iterative numerical techniques have been developed to solve nonlinear structural problems and some of these methods are capable to trace complex paths in the space load/displacement. One of those most popular procedures is the arc-length method of Crisfield, which possesses the capability to overcome inflection points, without having the necessity of determining them. A great similarity exists between curves of the nonlinear load/displacement path obtained with the arc-length method, and curves of the frequency response of nonlinear dynamic systems. Both curves present limit points with snap-back and snap-through phenomena. This work consists of the description and the application of the arc-length method to solve a system of nonlinear equations obtaining as a result the nonlinear frequency response. The analysis employs the concept of the describing functions where the fundamental harmonic component is considered the most relevant and for some cases can be considered an approximation to the effect of all harmonics. Some examples involving a cubic stiffness and a gap nonlinearity are employed to illustrate the methodology. © 2004 Elsevier Ltd. All rights reserved.
机译:已经开发了几种迭代数值技术来解决非线性结构问题,其中一些方法能够跟踪空间载荷/位移中的复杂路径。最流行的过程之一是Crisfield的弧长方法,该方法具有克服拐点的能力,而无需确定拐点。用弧长法获得的非线性载荷/位移路径的曲线与非线性动力系统的频率响应曲线之间存在很大的相似性。两条曲线均具有极限点,具有回跳和击穿现象。这项工作包括弧长方法的描述和应用,以解决一个非线性方程组,从而获得非线性频率响应。该分析采用了描述函数的概念,其中基本谐波分量被认为是最相关的,在某些情况下可以被认为是所有谐波效应的近似值。一些涉及立方刚度和间隙非线性的例子被用来说明该方法。 &复制; 2004 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号