首页> 外文期刊>Journal of Process Control >On-line optimization of the Tennessee Eastman challenge problem
【24h】

On-line optimization of the Tennessee Eastman challenge problem

机译:田纳西伊士曼挑战问题的在线优化

获取原文
获取原文并翻译 | 示例
           

摘要

On-line, optimal steady state operating conditions were determined for the six modes of operation (with and without disturbances) for the industrial recycle reactor problem proposed by Downs and Vogel (J.J. Downs, E.F. Vogel, A plant-wide industrial process control problem, Computers and Chemical Engineering 17 (1993) 245-255.). The optimization and modeling problem was formulated as a sequential solution of steady state material balances through the process. Optimal operating setpoints were obtained using NPSOL (P.E. Gill et al., User's Guide for NPSOL: A FORTRAN Package for Nonlinear Programming, Technical Report SOL86-2, Stanford University, CA, 1986.) and reactor feed material balances as equality, non-linear constraints. On-line optimization results, without disturbances, compared favorably with the results obtained by Ricker (N.L. Ricker, Optimal steady-state operation of the Tennessee Eastman challenge process, Computers and Chemical Engineering 19 (1995) 949-959.). The optimization objective function tended to be broad and flat around the optimal operating conditions for all six modes of operation. The on-liner steady state, optimization algorithm compared favorably with the more complicated optimization structure designed by Yan (M. Yan, N. L. Picker, On-line optimization of the Tennessee Eastman challenge process, in: Proceedings of the 1997 American Control Conference.). However, the algorithm presented here required less computational effort and exhibited greater convergence reliability than the work of Yan. On-line optimization was performed every 8 h and required less than 5 min calculation time. Updated model parameters were calculated every minute and filtered using a first order filter with 15 min time constant. Net profit was introduced as a tool to compare economic performance of the plant operating under a knowledgeable operator and operating under an off-line/on-line optimization algorithm for all six modes of operation. For modes 1-3, operating at the setpoints generated by the optimization algorithm provided significant increases in production rate and net profit that amounted to a 16-45% decrease in product operating costs when compared to operation of the plant at the setpoints specified by an operator. By decreasing operating costs and increasing production rate while maintaining a specified G/H ratio, the optimization algorithm increased net profit by 9.3-0.5% for modes 4-6, respectively, when compared to knowledgeable operator optimization of the plant. Also for sustained disturbances, the optimization algorithm decreased the error in the desired G/H ratio and increased process stability when compared to knowledgeable operator optimization of the plant. On-line optimization provided a maximum 1% relative increase in production rate and 1.5% relative increase in net profit compared to off-line optimization for modes 4-6 only when certain sustained, disturbances occurred. The economic justification of on-line optimization over off-line optimization depends upon the type, magnitude, and frequency of the disturbances. (C) 1999 Published by Elsevier Science Ltd. All rights reserved. [References: 19]
机译:针对Downs和Vogel提出的工业循环反应器问题(JJ Downs,EF Vogel,全厂范围的工业过程控制问题,以下内容)确定了六种运行模式(有无扰动)的在线最佳稳态运行条件:计算机与化学工程17(1993)245-255。)。优化和建模问题被表述为在整个过程中稳态材料平衡的顺序解决方案。使用NPSOL(PE Gill等人,NPSOL用户指南:用于非线性编程的FORTRAN程序包,技术报告SOL86-2,加利福尼亚州斯坦福大学,1986年)获得最佳运行设定点,并且反应器原料平衡为均等,非线性约束。与Ricker获得的结果相比,在线优化结果无干扰(N.L. Ricker,Tennessee Eastman挑战过程的最佳稳态操作,计算机与化学工程19(1995)949-959)。对于所有六种操作模式,优化目标函数都倾向于在最佳操作条件周围宽泛而平坦。在线稳定状态优化算法与Yan所设计的更复杂的优化结构相比是有利的(M. Yan,NL Picker,田纳西伊士曼挑战过程的在线优化,在:1997年美国控制会议论文集。) 。但是,与Yan的工作相比,此处提出的算法需要较少的计算工作并显示出更高的收敛可靠性。在线优化每8小时执​​行一次,所需的计算时间少于5分钟。每分钟计算更新的模型参数,并使用具有15分钟时间常数的一阶滤波器进行过滤。引入净利润作为一种工具,用于比较在所有六种运营模式下,由知识丰富的运营商运营的工厂的经济绩效,以及在离线/在线优化算法下运营的工厂的经济绩效。对于模式1-3,与由工厂指定的设定点运行相比,以优化算法生成的设定点运行可显着提高生产率和净利润,从而使产品运行成本降低16-45%。操作员。通过降低运营成本并提高生产率,同时保持特定的G / H比,与知识渊博的工厂运营商优化相比,优化算法分别将模式4-6的净利润提高了9.3-0.5%。同样对于持续的干扰,与工厂的知识丰富的操作员优化相比,优化算法减少了所需G / H比的误差并提高了过程稳定性。与模式4-6的离线优化相比,在线优化提供了最大1%的相对生产率增长和1.5%的净利润相对增长,仅当发生某些持续扰动时才如此。在线优化优于离线优化的经济依据取决于干扰的类型,大小和频率。 (C)1999由Elsevier Science Ltd.出版。保留所有权利。 [参考:19]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号