首页> 外文期刊>Journal fur die Reine und Angewandte Mathematik >Stability of hypersurfaces with vanishing r-mean curvatures in Euclidean spaces
【24h】

Stability of hypersurfaces with vanishing r-mean curvatures in Euclidean spaces

机译:欧氏空间中r均值曲率消失的超曲面的稳定性

获取原文
获取原文并翻译 | 示例

摘要

Hypersurfaces of euclidean spaces with vanishing r-mean curvature generalize minimal hypersurfaces (case r = 1) and include the important case of scalar curvature (r = 2). They are critical points of variational problems and a notion of stability can be assigned to them. When their defining equations are elliptic, we obtain a criterion for stability of bounded domains of such hypersurfaces that generalizes a known theorem of Barbosa and do Carmo for stability of minimal surfaces. [References: 15]
机译:r均值曲率消失的欧几里得空间的超曲面泛化了最小的超曲面(情况r = 1),并且包括标量曲率的重要情况(r = 2)。它们是变化问题的关键点,可以为它们指定稳定性的概念。当它们的定义方程为椭圆形时,我们获得了此类超曲面的有界域稳定性的准则,该准则推广了Barbosa的一个已知定理,而Carmo则实现了最小曲面的稳定性。 [参考:15]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号