首页> 外文期刊>Journal of Microscopy >Third-order aberration theory of Wien filters for monochromators and aberration correctors.
【24h】

Third-order aberration theory of Wien filters for monochromators and aberration correctors.

机译:用于单色仪和像差校正器的维恩滤波器的三阶像差理论。

获取原文
获取原文并翻译 | 示例
       

摘要

Summary Third-order aberrations at the first and the second focus planes of double focus Wien filters are derived in terms of the following electric and magnetic field components - dipole: E(1), B(1); quadrupole: E(2), B(2); hexapole: E(3), B(3) and octupole: E(4), B(4). The aberration coefficients are expressed under the second-order geometrical aberration free conditions of E(2) = -(m + 2)E(1)/8R, B(2) = -mB(1)/8R and E(3)R(2)/E(1) - B(3)R(2)/B(1) = m/16, where m is an arbitrary value common to all equations. Aberration figures under the conditions of zero x- and y-axes values show very small probe size and similar patterns to those obtained using a previous numerical simulation [G. Martinez & K. Tsuno (2004) Ultramicroscopy, 100, 105-114]. Round beam conditions are obtained when B(3) = 5m(2)B(1)/144R(2) and (E(4)/E(1) - B(4)/B(1))R(3) = -29m(2)/1152. In this special case, aberration figures contain only chromatic and aperture aberrations at the second focus. The chromatic aberrations become zero when m = 2 and aperture aberrations become zero when m = 1.101 and 10.899 at the second focus. Negative chromatic aberrations are obtained when m < 2 and negative aperture aberrations for m < 1.101. The Wien filter functions not only as a monochromator but also as a corrector of both chromatic and aperture aberrations. There are two advantages in using a Wien filter aberration corrector. First, there is the simplicity that derives from it being a single component aberration correction system. Secondly, the aberration in the off-axis region varies very little from the on-axis figures. These characteristics make the corrector very easy to operate.
机译:小结双焦点维恩滤波器在第一和第二焦点平面上的三阶像差是根据以下电场和磁场分量得出的:偶极子:E(1),B(1);四极杆:E(2),B(2);六极:E(3),B(3)和八极:E(4),B(4)。像差系数在E(2)=-(m + 2)E(1)/ 8R,B(2)= -mB(1)/ 8R和E(3)的无二阶几何像差的条件下表示R(2)/ E(1)-B(3)R(2)/ B(1)= m / 16,其中m是所有方程式共同的任意值。在x轴和y轴值为零的情况下,像差图显示出非常小的探头尺寸,并且具有与使用以前的数值模拟所获得的相似的图案[G. Martinez&K.Tsuno(2004)Ultramicroscopy,100,105-114]。当B(3)= 5m(2)B(1)/ 144R(2)和(E(4)/ E(1)-B(4)/ B(1))R(3)时获得圆梁条件= -29m(2)/ 1152。在这种特殊情况下,像差图仅在第二焦点处包含色差和光圈像差。当m = 2时,色差变为零;当第二个焦点处的m = 1.101和10.899时,孔径像差变为零。当m <2时获得负色差,而对于m <1.101则获得负光圈像差。 Wien滤镜不仅用作单色仪,而且还用作色差和孔径像差的校正器。使用维恩滤镜像差校正器有两个优点。首先,从简单性出发,它是一个单分量像差校正系统。其次,离轴区域的像差与轴上的数字变化很小。这些特性使校正器非常易于操作。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号