首页> 外文期刊>Journal of Micromechanics and Microengineering >An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel
【24h】

An adhesive bonding method with microfabricating micro pillars to prevent clogging in a microchannel

机译:一种通过微制造微柱来防止微通道堵塞的胶粘方法

获取原文
获取原文并翻译 | 示例
       

摘要

Thermoplastics are widely used in the fabrication of microfluidic chips, due to their low cost, flexibility in manufacturing, and applicability in large-scale production. This paper presents a novel bonding method for the assembly of thermoplastic microfluidic chips, with the aim of preventing the flow of UV adhesive into microchannels during the bonding process. The proposed bonding methodology depends primarily on controlling the thickness of the UV adhesive, which is achieved by using spin-coating for the uniform UV adhesive in conjunction with the microfabrication of short pillars for keeping a uniform gap between the two bonded surfaces. In this study, two devices with serpentine microchannels (cross-sectional area of 500 mu m x 500 mu m and 200 mu m x 200 mu m) were fabricated on PMMA substrates using a micromilling machine, whereupon a hydrophobic coating was applied to the walls of 200 mu m x 200 mu m microchannels in order to prevent clogging, which might otherwise be caused by the seepage of UV adhesive into the channels. A variety of experiments were used to characterize the quality of bonding, the results of which reveal the following: (1) no leakage was observed in either of the microfluidic chips; (2) the hydrophobic coating proved highly effective in preventing the flow of UV adhesive into the smaller microchannels; (3) the average amount of clogging inside 500 mu m x 500 mu m microchannels was 1.13% with standard deviation of 0.55%, while the average amount of clogging inside 200 mu m x 200 mu m microchannels was 1.65% with standard deviation of 0.92%; (4) the average thickness of the UV adhesive in a 500 mu m x 500 mu m microfluidic chip was 32 mu m with standard deviation of 2 mu m, whereas the average thickness of the UV adhesive in a 200 mu m x 200 mu m microfluidic chip was 31 mu m with standard deviation of 1.2 mu m; (5) the two chips possess sufficient bonding strength to withstand pressure of at least 10 bar.
机译:热塑性塑料由于其低成本,制造上的灵活性以及在大规模生产中的适用性而被广泛用于微流体芯片的制造中。本文提出了一种用于组装热塑性微流控芯片的新型粘合方法,目的是防止在粘合过程中UV粘合剂流入微通道。所提出的粘合方法主要取决于控制UV粘合剂的厚度,这是通过对均匀UV粘合剂使用旋涂结合短柱的微细加工以保持两个粘合表面之间的均匀间隙来实现的。在这项研究中,使用微铣床在PMMA基板上制造了两个具有蛇形微通道的装置(截面积分别为500μmx500μm和200μmx200μm),随后在200 mm的壁上涂了疏水涂层200微米的微通道,以防止堵塞,否则可能是由于紫外线粘合剂渗入通道引起的。通过各种实验来表征键合的质量,结果表明:(1)在两个微流控芯片中均未观察到泄漏; (2)疏水涂层被证明对防止紫外线粘合剂流入较小的微通道非常有效; (3)500μm×500μm微通道内部平均堵塞率为1.13%,标准偏差为0.55%;200μm×200μm微通道内部平均堵塞率为1.65%,标准偏差为0.92%; (4)500微米x 500微米微流体芯片中的UV粘合剂的平均厚度为32微米,标准偏差为2微米,而200微米x 200微米微流体芯片中的紫外线粘合剂的平均厚度为31微米,标准偏差为1.2微米; (5)两个芯片具有足够的结合强度,可以承受至少10 bar的压力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号