首页> 外文期刊>Journal of Micromechanics and Microengineering >A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform
【24h】

A micro-chip initiator with controlled combustion reactivity realized by integrating Al/CuO nanothermite composites on a microhotplate platform

机译:通过将Al / CuO纳米铝热复合材料集成在微热板平台上实现具有可控燃烧反应性的微芯片引发剂

获取原文
获取原文并翻译 | 示例
           

摘要

The interfacial contact area between the fuel and oxidizer components plays an important role in determining the combustion reactivity of nanothermite composites. In addition, the development of compact and reliable ignition methods can extend the applicability of nanothermite composites to various thermal engineering fields. In this study we report the development of a micro-chip initiator with controlled combustion reactivity using concepts usually applied to microelectromechanical systems (MEMS) and simple nanofabrication processes. The nanothermite composites fabricated in this study consisted of aluminum nanoparticles (Al NPs) as the fuel and copper oxide nanoparticles (CuO NPs) as the oxidizer accumulated on a silicon oxide substrate with a serpentine-shaped gold (Au) electrode. The micro-chip initiator rapidly ignited and exploded when minimal current was supplied. The effects of stacking structures of Al and CuO-based multilayers on the combustion properties were systematically investigated in terms of the pressurization rate, peak explosion time, and heat flow. Pressurization rates of 0.004-0.025 MPa mu s(-1) and heat flows of 2.0-3.8 kJ g(-1) with a commonly fast response time of less than 20 ms could be achieved by simply changing the interfacial structures of the Al and CuO multilayers. The controllability of combustion reactivity of micro-chip initiator can be made for general nanothermite composites composed of Al and various metal oxides (e.g. Fe2O3, CuO, KMnO4, etc). The micro-chip initiator fabricated in this study was reliable, compact, and proved to be a versatile platform, exhibiting controlled combustion reactivity and fast response time, which could be used for various civilian and military thermal engineering applications, such as in initiators and propulsion, welding, and ordinance systems.
机译:燃料和氧化剂组分之间的界面接触面积在确定纳米铝热复合材料的燃烧反应性中起着重要作用。另外,紧凑而可靠的点火方法的发展可以将纳米铝热复合材料的适用性扩展到各种热工程领域。在这项研究中,我们报告了使用通常应用于微机电系统(MEMS)和简单的纳米加工过程的概念,具有可控燃烧反应性的微芯片引发剂的发展。在这项研究中制造的纳米热复合材料由铝纳米颗粒(Al NPs)作为燃料和氧化铜纳米颗粒(CuO NPs)作为氧化剂,聚集在带有蛇形金(Au)电极的氧化硅衬底上。当提供最小电流时,微芯片起爆器迅速点燃并爆炸。从加压速率,峰值爆炸时间和热流的角度,系统地研究了Al和CuO基多层堆叠结构对燃烧性能的影响。通过简单地改变Al和Al的界面结构,就可以实现0.004-0.025 MPa mu s(-1)的加压速率和2.0-3.8 kJ g(-1)的热流,且响应时间通常小于20 ms。 CuO多层。对于由Al和各种金属氧化物(例如Fe 2 O 3,CuO,KMnO 4等)组成的普通纳米热复合材料,可以控制微芯片引发剂的燃烧反应性。这项研究中制造的微芯片引爆器可靠,紧凑,并被证明是通用平台,具有可控的燃烧反应性和快速的响应时间,可用于各种民用和军用热力工程应用,例如引爆器和推进器,焊接和法令系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号