首页> 外文期刊>Journal of near infrared spectroscopy >An application of near infrared spectroscopy to the study of carbonate minerals-smithsonite, rhodochrosite, sphaerocobaltite and cadmium smithsonite
【24h】

An application of near infrared spectroscopy to the study of carbonate minerals-smithsonite, rhodochrosite, sphaerocobaltite and cadmium smithsonite

机译:近红外光谱技术在碳酸盐矿物-菱铁矿,菱锰矿,闪锌矿和镉铁矿的研究中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

Near infrared (NIR) spectroscopy has been applied to the study of selected calcite group minerals including smithsonite, rhodochrosite, sphaerocobaltite and cadmium smithsonite. The isomorphic substitution of calcium in calcite group minerals by divalent cations such as Fe, Cu, Cd, Mn, Mg, Co, Zn is in agreement with variable spectral properties observed through NIR spectroscopy. This substitution results in highly-coloured minerals. The NIR spectra of calcite group minerals that contain absorption features due to the divalent cations, Fe{sup}(2+), Cu{sup}(2+) and Co{sup}(2+) act as an aid to mineral identification. The main indicator is the strength of ferrous ion bands in the NIR spectra supporting spectral classification of calcite group minerals. The observation of Cu{sup}(2+) bands in smithsonite and cadmium smithsonite with different band positions around 12400 and 8500cm{sup}(-1) (0.81-1.18 μm) confirms Cu{sup}(2+) substitution for Zn{sup}(2+). Co{sup}(2+) is the major cation in sphaerocobaltite and exhibits a strong feature from 12000 to 7000 cm{sup}(-1) (0.83-1.43 μm) which is distinctly different from other minerals of the group. The broad band centred at 9835cm{sup}(-1) (1.02 μm) with a split component at 8186cm{sup}(-1) (1.22 μm) is assigned to 4{sup left}T{sub}(1g)(F)→4{sup left}T{sub}(2g)(F) spin-allowed transition of Co{sup}(2+) ion. Significant shifts are observed for carbonate ion due to the wide range of cation substitutions in the mineral structure in conjunction with the ferrous iron which is a common impurity in calcite minerals. This NIR spectral features enable mineral identification. The implication is that NIR spectroscopy can be used to remotely detect carbonate minerals and assess their isomorphic substitution.
机译:近红外(NIR)光谱技术已用于研究方解石类矿物,包括铁矿石,菱锰矿,闪锌矿和镉铁矿石。方解石族矿物中钙被Fe,Cu,Cd,Mn,Mg,Co,Zn等二价阳离子的同晶取代与通过近红外光谱法观察到的可变光谱特性一致。这种替代产生了高度着色的矿物。方解石族矿物的NIR光谱由于具有二价阳离子Fe {sup}(2 +),Cu {sup}(2+)和Co {sup}(2+)而具有吸收特征,有助于矿物鉴定。主要指标是近红外光谱中亚铁离子谱带的强度,支持方解石族矿物的光谱分类。观察在12400和8500cm {sup}(-1)(0.81-1.18μm)附近具有不同能带位置的新铁矿和镉新铁矿中的Cu {sup}(2+)带,证实了Cu {sup}(2+)替代了Zn {sup}(2+)。 Co {sup}(2+)是方钴矿中的主要阳离子,在12000至7000 cm {sup}(-1)(0.83-1.43μm)范围内表现出很强的特征,与该组中的其他矿物明显不同。中心位于9835cm {sup}(-1)(1.02μm)的宽频带以及8186cm {sup}(-1)(1.22μm)处的分离分量被分配给4 {supleft} T {sub}(1g)( F)→4 {sup left} T {sub}(2g)(F)允许Co {sup}(2+)离子自旋跃迁。由于矿物结构中阳离子取代的范围很广,加上方解石矿物中常见的杂质二价铁,因此观察到了碳酸根离子的明显变化。这种近红外光谱特性可实现矿物鉴定。这意味着NIR光谱学可用于远程检测碳酸盐矿物并评估其同构替代。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号