首页> 外文期刊>Journal of Materials Chemistry, A. Materials for energy and sustainability >Synthesis of core-shell alpha-Fe2O3@NiO nanofibers with hollow structures and their enhanced HCHO sensing properties
【24h】

Synthesis of core-shell alpha-Fe2O3@NiO nanofibers with hollow structures and their enhanced HCHO sensing properties

机译:具有空心结构的核-壳α-Fe2O3@ NiO纳米纤维的合成及其增强的HCHO传感性能

获取原文
获取原文并翻译 | 示例
           

摘要

Different components and well-defined structures may cooperatively improve the performances of composite materials and enhance their applicability. In this paper, core-shell alpha-Fe2O3@NiO nanofibers (alpha-Fe2O3@NiO CSNFs) with hollow nanostructures are synthesized by a facile coaxial electrospinning method and calcination procedure. Considering the temperature-dependent solute degradation process and different influencing factors including the solvent evaporation rate and phase separation, a multistage formation mechanism has been proposed to understand the formation of the CSNF structure. The gas sensing tests indicate that the alpha-Fe2O3@NiO CSNFs exhibit significantly improved gas sensitivity and selectivity performances in comparison with NiO hollow nanofibers (NiO HNFs) and alpha-Fe2O3 nanofibers (alpha-Fe2O3 NFs). The response of alpha-Fe2O3@NiO CSNFs to 50 ppm HCHO at 240 degrees C is similar to 12.8, which is 10- and 7.1-times higher than those of pure NiO and a-Fe2O3, respectively. The synergy between the heterojunction, core-shell hollow nanofiber structure and Fe loading into the NiO shell contribute to the enhanced response of alpha-Fe2O3@NiO CSNFs. Moreover, extremely fast response-recovery behavior (similar to 2 s and similar to 9 s) has been observed at the optimal working temperature of 240 degrees C. The detection limit for HCHO could be lower than 1 ppm. These favorable gas sensing performances make the alpha-Fe2O3@NiO CSNFs promising materials for gas sensors.
机译:不同的组件和定义明确的结构可以共同提高复合材料的性能并增强其适用性。本文采用一种简便的同轴电纺方法和煅烧工艺合成了具有空心纳米结构的核-壳α-Fe2O3@ NiO纳米纤维(α-Fe2O3@ NiO CSNFs)。考虑到随温度变化的溶质降解过程以及包括溶剂蒸发速率和相分离在内的不同影响因素,提出了一种多阶段形成机理以了解CSNF结构的形成。气敏测试表明,与NiO中空纳米纤维(NiO HNFs)和α-Fe2O3纳米纤维(alpha-Fe2O3 NFs)相比,α-Fe2O3@ NiO CSNFs表现出显着改善的气体敏感性和选择性。 α-Fe2O3@ NiO CSNFs在240摄氏度下对50 ppm HCHO的响应类似于12.8,分别比纯NiO和α-Fe2O3高10倍和7.1倍。异质结,核-壳中空纳米纤维结构与Fe加载到NiO壳层之间的协同作用有助于提高α-Fe2O3@ NiO CSNF的响应。此外,在240摄氏度的最佳工作温度下,观察到了非常快的响应恢复行为(类似于2 s和类似于9 s)。HCHO的检出限可能低于1 ppm。这些良好的气体传感性能使alpha-Fe2O3 @ NiO CSNFs成为气体传感器的有前途的材料。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号