首页> 外文期刊>Journal of Mechanical Science and Technology >Determination of the minute range for RSM to select the optimum cutting conditions during turning on CNC lathe
【24h】

Determination of the minute range for RSM to select the optimum cutting conditions during turning on CNC lathe

机译:确定在打开CNC车床时RSM选择最佳切削条件的分钟范围

获取原文
获取原文并翻译 | 示例

摘要

Taguchi method and RSM (response surface method) are two of the most well known DOE (design of experiment) techniques. The levels of parameters are recommended to be taken far apart in the Taguchi method in order to cover a wide region to increase the chance of capturing nonlinearity of the relationship between the control and control factors. On the contrary, as long as the optimum is located within the region, RSM needs it to be as small as possible to identify the exact optimum. In this study, the Taguchi method is used to determine the rough region first, followed by RSM technique to determine the exact optimum value during turning on a CNC lathe. A new region reducing algorithm is introduced to narrow down the region of the Taguchi method for RSM. To achieve the goal, the result from the Taguchi method is fed to train the artificial neural network (ANN), whose optimum value is used to drive the region reducing algorithm. The proposed algorithm is tested under different cutting condition with different insert and work material. Data located in the literature is also used to inspect the adequacy of the region reducing algorithm. Both results show that the introduced algorithm has a good region reducing capability. In a separated experiment, it is shown that the obtained cutting condition from RSM gives a better result than that from the Taguchi method.
机译:田口方法和RSM(响应表面方法)是最著名的两种DOE(实验设计)技术。在Taguchi方法中,建议将参数水平分开,以覆盖较大的区域,以增加捕获控制因素和控制因素之间关系的非线性的机会。相反,只要最佳值位于该区域内,RSM便需要使其尽可能小以识别确切的最佳值。在这项研究中,首先使用Taguchi方法确定粗糙区域,然后使用RSM技术确定在打开CNC车床时的精确最佳值。引入了一种新的区域缩小算法,以缩小Taguchi方法用于RSM的区域。为了实现该目标,将Taguchi方法的结果馈入到训练人工神经网络(ANN),并将其最佳值用于驱动区域缩小算法。所提出的算法在不同切削条件下使用不同的刀片和工作材料进行了测试。位于文献中的数据也用于检查区域缩减算法的适当性。两种结果均表明该算法具有良好的区域缩小能力。在单独的实验中,表明从RSM获得的切削条件比从Taguchi方法获得的切削条件提供了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号