...
首页> 外文期刊>Biopolymers: Original Research on Biomolecules and Biomolecular Assemblies >THE MEASUREMENT OF TRANSMEMBRANE HELICES BY THE DECONVOLUTION OF CD SPECTRA OF MEMBRANE PROTEINS - A REVIEW [Review]
【24h】

THE MEASUREMENT OF TRANSMEMBRANE HELICES BY THE DECONVOLUTION OF CD SPECTRA OF MEMBRANE PROTEINS - A REVIEW [Review]

机译:膜蛋白CD光谱反卷积法测定跨膜顶峰-综述[综述]

获取原文
获取原文并翻译 | 示例
           

摘要

The interpretation of the CD spectra of proteins to date requires additional secondary structural information of the proteins to be analyzed, such as x-ray or nmr data. Therefore, these methods are inappropriate for a CD data base whose secondary structures are unknown, as in the case of the membrane proteins. The Convex Constraint Analysis algorithm [A. Perczel, M. Hollosi, G. Tusnady, and G. D. Fasman (1991) Protein Engineering, Vol. 4, 669-679], on the other hand, operates only on a collection of spectral data to extract the common spectral components with their spectral weights. The linear combinations of these derived ''pure'' CD curves can reconstruct the original data set with great accuracy. For a membrane protein data set, the five- component spectra so obtained from the deconvolution consisted of two different types of alpha-helices (the alpha-helix in the soluble domain and the alpha(T)-helix, for the transmembrane alpha-helix), a beta-pleated sheet, a class C-like spectrum related to beta-turns, and a spectrum correlated with the unordered conformation. The deconvoluted CD spectrum for the alpha(T)-helix was characterized by a positive red-shifted band in the range 195-200 nm (+95,000 deg cm(2) dmol(-1)), with the intensity of the negative band at 208 nm being slightly less negative than that of the 222 nm band (-50,000 and -60,000 deg cm(2) dmol(-1), respectively) in comparison with the regular alpha-helix, with a positive band at 190 nm and two negative bands at 208 and 222 nm with magnitudes of +70,000, -30,000, and -30, 000 deg cm(2) dmol(-1), respectively. (C) 1995 John Wiley & Sons, Inc. [References: 74]
机译:迄今为止,对蛋白质CD光谱的解释需要其他待分析蛋白质的二级结构信息,例如X射线或nmr数据。因此,这些方法不适用于二级结构未知的CD数据库,例如膜蛋白。凸约束分析算法[A. Perczel,M.Hollosi,G.Tusnady和G.D.Fasman(1991)Protein Engineering,Vol。 [4,669-679],另一方面,仅对光谱数据的集合进行操作以提取具有其光谱权重的公共光谱成分。这些导出的“纯” CD曲线的线性组合可以非常准确地重建原始数据集。对于膜蛋白数据集,如此从反卷积中获得的五组分光谱由两种不同类型的α螺旋组成(可溶域中的α螺旋和跨膜α螺旋的α(T)螺旋) ),β折叠的薄片,与β转角相关的类C类光谱以及与无序构象相关的光谱。去卷积的CD谱的alpha(T)螺旋的特征是在195-200 nm(+95,000 deg cm(2)dmol(-1))范围内出现正红移带,强度为负带与常规的α-螺旋相比,在208 nm处的负谱带比在222 nm谱带上的负谱带(分别为-50,000和-60,000 deg cm(2)dmol(-1))的负谱带稍弱,在190 nm和在208和222 nm处的两个负带,幅度分别为+ 70,000,-30,000和-30,000 deg cm(2)dmol(-1)。 (C)1995 John Wiley&Sons,Inc. [参考:74]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号