首页> 外文期刊>Journal of Fluid Mechanics >Tangential electroviscous drag on a sphere surrounded by a thin double layer near a wall for arbitrary particle-wall separations
【24h】

Tangential electroviscous drag on a sphere surrounded by a thin double layer near a wall for arbitrary particle-wall separations

机译:切向电粘性在壁附近的薄双层包围的球体上进行拖动,以进行任意的粒子-壁分离

获取原文
获取原文并翻译 | 示例

摘要

When a charged particle moves along a charged wall in a polar fluid, it experiences an electroviscous lift force normal to the surface and an electroviscous drag, superimposed on the viscous drag, parallel to the surface. Here a theoretical analysis is presented to determine the electroviscous drag on a charged spherical particle surrounded by a thin electrical double layer near a charged plane wall, when the particle translates parallel to the wall without rotation, in a symmetric electrolyte solution at rest. The electroviscous (electro-hydrodynamic) forces, arising from the coupling between the electrical and hydrodynamic equations, are determined as a solution of three partial differential equations, for electroviscous ion concentration (perturbed ion clouds), electroviscous potential (perturbed electric potential) and electroviscous or electro-hydrodynamic flow field (perturbed flow field). The problem was previously solved for small gap widths and low Peclet numbers in the inner region around the gap between the sphere and the wall, using lubrication theory. Here the restriction on the particle-wall distances is removed, and an analytical and numerical solution is obtained valid for the whole domain of interest. For large sphere-wall separations the solution approaches that for the electroviscous drag on an isolated sphere in an unbounded fluid. For small particle-wall distances it differs from that obtained by the use of lubrication theory, showing that lubrication theory is inadequate for electroviscous problems. The analytical results are in complete agreement with the full numerical calculations. For small particle-wall distances a model is given which provides both physical insight and an easy way to calculate the force with high precision.
机译:当带电粒子在极性流体中沿着带电壁移动时,它会经受垂直于表面的电粘力,而电粘滞力会叠加在与表面平行的粘性阻力上。在这里,进行了理论分析,以确定在静止的对称电解质溶液中,当颗粒平行于壁平移而不旋转时,在带电平面壁附近的薄双电层包围的带电球形颗粒上的电粘滞阻力。由电方程和流体动力学方程之间的耦合产生的电粘性(电流体动力)被确定为三个偏微分方程的解,用于电粘性离子浓度(扰动的离子云),电粘性势(扰动的电势)和电粘性或电动流体动力流场(扰动流场)。以前,使用润滑理论解决了球体和壁之间的间隙周围的内部区域中的小间隙宽度和低Peclet数的问题。在这里,消除了对粒子-壁距离的限制,并且获得了对整个感兴趣区域有效的解析和数值解。对于大的球壁分离,该解决方案接近于电粘滞在无边界流体中的隔离球上的阻力。对于小颗粒壁距离,它与使用润滑理论获得的距离不同,这表明润滑理论不足以解决电粘性问题。分析结果与全部数值计算完全吻合。对于较小的粒子壁距离,给出了一个模型,该模型可以提供物理洞察力,并且可以轻松地以高精度计算力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号