首页> 美国卫生研究院文献>ACS AuthorChoice >Electroviscous Dissipation in Aqueous ElectrolyteFilms with Overlapping Electric Double Layers
【2h】

Electroviscous Dissipation in Aqueous ElectrolyteFilms with Overlapping Electric Double Layers

机译:电解质水溶液中的电粘性耗散重叠双电层的薄膜

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We use dynamic atomic force microscopy (AFM) to investigate the forces involved in squeezing out thin films of aqueous electrolyte between an AFM tip and silica substrates at variable pH and salt concentration. From amplitude and phase of the AFM signal we determine both conservative and dissipative components of the tip sample interaction forces. The measured dissipation is enhanced by up to a factor of 5 at tip–sample separations of ≈ one Debye length compared to the expectations based on classical hydrodynamic Reynolds damping with bulk viscosity. Calculating the surface charge density from the conservative forces using Derjaguin–Landau–Verwey–Overbeek (DLVO) theory in combination with a charge regulation boundary condition we find that the viscosity enhancement correlates with increasing surface charge density. We compare the observed viscosity enhancement with two competing continuum theory models: (i) electroviscous dissipation due to the electrophoretic flow driven by the streaming current that is generated upon squeezing out the counterions in the diffuse partof the electric double layer, and (ii) visco-electric enhancementof the local water viscosity caused by the strong electric fieldswithin the electric double layer. While the visco-electric model correctlycaptures the qualitative trends observed in the experiments, a quantitativedescription of the data presumably requires more sophisticated simulationsthat include microscopic aspects of the distribution and mobilityof ions in the Stern layer.
机译:我们使用动态原子力显微镜(AFM)来研究在可变pH和盐浓度下,AFM吸头和二氧化硅基质之间的水性电解质薄膜被挤出的力。根据AFM信号的幅度和相位,我们可以确定尖端样品相互作用力的保守分量和耗散分量。与基于经典流体动力雷诺阻尼和本体粘度的期望值相比,在尖端样品间距约为1德拜长度时,测得的耗散提高了5倍。使用Derjaguin–Landau–Verwey–Overbeek(DLVO)理论结合电荷调节边界条件,通过保守力计算表面电荷密度,我们发现粘度的提高与表面电荷密度的增加相关。我们将观察到的粘度增加与两个竞争的连续体理论模型进行比较:(i)由于电泳电流的流动而产生的电粘滞耗散,而电泳电流是由弥散部分中的抗衡离子被挤出而产生的双电层的特性;(ii)粘电增强电场引起的局部水粘度的变化在双电层内。而粘电模型正确捕获实验中观察到的定性趋势数据描述大概需要更复杂的模拟其中包括分布和流动性的微观方面离子在斯特恩层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号