首页> 外文期刊>Journal of chromatography, A: Including electrophoresis and other separation methods >NEURAL NETWORKS IN HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY OPTIMIZATION - RESPONSE SURFACE MODELING
【24h】

NEURAL NETWORKS IN HIGH-PERFORMANCE LIQUID CHROMATOGRAPHY OPTIMIZATION - RESPONSE SURFACE MODELING

机译:高效液相色谱优化中的神经网络-响应表面建模

获取原文
获取原文并翻译 | 示例

摘要

The usefulness of artificial neural networks for response surface modeling in HPLC optimization is compared with (non-)linear regression methods. The number of hidden nodes is optimized by a lateral inhibition method. Overfitting is controlled by cross-validation using the leave one out method (LOOM). Data sets of linear and non-linear response surfaces (capacity factors) were taken from literature. The results show that neural networks offer promising possibilities in HPLC method development. The predictive results were better or comparable to those obtained with linear and non-linear regression models.
机译:将人工神经网络在HPLC优化中用于响应面建模的有用性与(非线性)线性回归方法进行了比较。通过横向抑制方法优化隐藏节点的数量。通过使用留一法(LOOM)进行交叉验证来控制过度拟合。线性和非线性响应面(容量因子)的数据集来自文献。结果表明,神经网络为HPLC方法开发提供了广阔的前景。预测结果与线性和非线性回归模型获得的结果更好或相当。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号