...
首页> 外文期刊>Journal of Computational Physics >Numerical simulation of elastic-plastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver
【24h】

Numerical simulation of elastic-plastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver

机译:欧拉拉伸张量法和HLLD Riemann求解器的弹塑性固体力学数值模拟

获取原文
获取原文并翻译 | 示例

摘要

An Eulerian, multi-material numerical method is described for computing dynamic problems involving large deformations in elastic-plastic solids. This approach addresses algorithm failures associated with reconnection and change in topology observed in previously proposed formulations. Among the information contained in the deformation gradients commonly employed for defining constitutive laws suitable for solids, only the symmetric matrix tensor obtained from a polar decomposition of the elastic component of the deformation is required to determine the stress state. The numerical utilization of this symmetric tensor, associated with material stretch, eliminates undesirable, discontinuous deformation states produced by local rigid-body rotations at same-material reconnecting interfaces. Such states appear even where stress states in impacting regions are similar. The temporal evolution of the stretches neither modifies the eigenstructure of the system of equations nor changes its size. We also present a new multi-material approximate Riemann solver based on the HLLD approach, previously applied to other hyperbolic systems, in which waves of distinct velocity exist, for example, as in magnetohydrodynamics. This solver is employed in combination with the modified ghost fluid method (M-GFM) in the description of multi-material interfaces. These composite algorithms enable numerical simulations of the Richtmyer-Meshkov instability (i.e., the instability produced by the interaction of an interface separating materials of different density with a shock wave at an angle) in converging geometries for solid materials that would have previously led to the failure of the method.
机译:描述了一种欧拉多材料数值方法,用于计算涉及弹塑性固体中大变形的动力学问题。这种方法解决了与先前提出的公式中观察到的与重新连接和拓扑变化相关的算法故障。在通常用于定义适用于固体的本构定律的变形梯度中包含的信息中,仅需要从变形弹性成分的极性分解获得的对称矩阵张量即可确定应力状态。与材料拉伸相关联的对称张量的数值利用消除了在相同材料的重新连接界面处局部刚体旋转产生的不希望的,不连续的变形状态。即使在冲击区域的应力状态相似的情况下,也会出现这种状态。拉伸的时间演化既不会改变方程组的特征结构,也不会改变其大小。我们还提出了一种基于HLLD方法的新的多材料近似Riemann求解器,该方法先前已应用于其他双曲系统,在该双曲系统中,存在不同速度的波,例如在磁流体动力学中。在多材料界面的描述中,此求解器与改进的幻影流体方法(M-GFM)结合使用。这些合成算法可以对固体材料在会聚几何形状时的几何形状进行Richtmyer-Meshkov不稳定性(即,由不同密度的分离界面与一定角度的冲击波相互作用而产生的不稳定性)的数值模拟,而以前这会导致方法失败。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号