首页> 外文期刊>Journal of Computational Physics >A unified high-order Eulerian method for continuum simulations of fluid flow and of elastic-plastic deformations in solids
【24h】

A unified high-order Eulerian method for continuum simulations of fluid flow and of elastic-plastic deformations in solids

机译:一种统一的高阶欧拉方法,用于连续模拟流体流动和固体弹性变形

获取原文
获取原文并翻译 | 示例
           

摘要

We develop a new high-order method for Eulerian simulations of solids undergoing large, elastic-plastic deformations. Thermodynamically consistent constitutive relations of classical hyperelasticity are used to describe the behavior of solids, liquids and gases in a unified manner. Two kinematic formulations, one based on the inverse deformation gradient tensor, and a second based on the symmetric Finger tensor, are used for tracking large deformations in solids. Simulations based on the Finger tensor are shown to be equivalent to those using the full inverse deformation gradient tensor at much lower computational expense. The numerical algorithm employs a 10th-order compact finite-difference scheme for spatial discretization and a 4th-order Runge-Kutta time-stepping scheme. An improved form of the Localized Artificial Diffusivity (LAD) method is used for numerical regularization of shocks and contact discontinuities. We show that this high-order numerical framework, previously used for simulations of fluid flows, is suitable for problems involving large deformations in elastic-plastic solids as well. Particular emphasis is laid on the choice of the artificial diffusivity parameters in order to sufficiently capture shocks and discontinuities in all the aforementioned continuum media with minimal added dissipation. Test cases in one and two dimensions are shown to demonstrate the feasibility and accuracy of the proposed approach. In particular, this choice of algorithms is shown to lead to excellent numerical resolution properties, and to preserve mass-consistency and curl/compatibility constraints with high order of accuracy. Potential extensions of this numerical framework include application to multi-material problems, involving compressible flow of fluids coupled to elastic-plastic deformations in solids, that are of significant engineering interest. (C) 2018 Elsevier Inc. All rights reserved.
机译:我们开发了一种新的高阶方法,用于欧拉模拟的固体仿真型较大,弹性塑性变形。经典超弹性的热力学一致的本构关系用于以统一的方式描述固体,液体和气体的行为。两个基于逆变形梯度张量的运动制剂,以及基于对称指称张量的第二型制剂用于跟踪固体中的大变形。基于手指张量的仿真被示出为等同于使用完整逆变形梯度张量的计算费用。数值算法采用10阶紧凑的有限差分方案,用于空间离散化和第4阶runge-Kutta时间梯度方案。一种改进的局部人工扩散性(LAD)方法的形式用于冲击和接触不连续性的数值正则化。我们表明,这种高阶数值框架以前用于模拟流体流动,适用于涉及弹性塑料固体中的大变形的问题。特别强调的是选择人工扩散参数的选择,以便充分捕获所有上述连续介质中的冲击和不连续性,并减少耗散。证明了一个和两个维度的测试用例证明了所提出的方法的可行性和准确性。特别地,示出了这种算法的选择导致了优异的数值分辨率性质,并以高阶的精度保持质量 - 一致性和卷曲/兼容性约束。该数值框架的潜在延伸包括应用于多重物质问题,涉及可压缩流体,其耦合到固体中的弹性变形,具有重要的工程兴趣。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号