首页> 外文期刊>Journal of Computational Physics >Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices
【24h】

Modeling and simulation of electronic structure, material interface and random doping in nano-electronic devices

机译:纳米电子器件中电子结构,材料界面和随机掺杂的建模与仿真

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The miniaturization of nano-scale electronic devices, such as metal oxide semiconductor field effect transistors (MOSFETs), has given rise to a pressing demand in the new theoretical understanding and practical tactic for dealing with quantum mechanical effects in integrated circuits. Modeling and simulation of this class of problems have emerged as an important topic in applied and computational mathematics. This work presents mathematical models and computational algorithms for the simulation of nano-scale MOSFETs. We introduce a unified two-scale energy functional to describe the electrons and the continuum electrostatic potential of the nano-electronic device. This framework enables us to put microscopic and macroscopic descriptions in an equal footing at nano-scale. By optimization of the energy functional, we derive consistently coupled Poisson-Kohn-Sham equations. Additionally, layered structures are crucial to the electrostatic and transport properties of nano-transistors. A material interface model is proposed for more accurate description of the electrostatics governed by the Poisson equation. Finally, a new individual dopant model that utilizes the Dirac delta function is proposed to understand the random doping effect in nano-electronic devices. Two mathematical algorithms, the matched interface and boundary (MIB) method and the Dirichlet-to-Neumann mapping (DNM) technique, are introduced to improve the computational efficiency of nano-device simulations. Electronic structures are computed via subband decomposition and the transport properties, such as the I-V curves and electron density, are evaluated via the non-equilibrium Green's functions (NEGF) formalism. Two distinct device configurations, a double-gate MOSFET and a four-gate MOSFET, are considered in our three-dimensional numerical simulations. For these devices, the current fluctuation and voltage threshold lowering effect induced by the discrete dopant model are explored. Numerical convergence and model well-posedness are also investigated in the present work.
机译:诸如金属氧化物半导体场效应晶体管(MOSFET)之类的纳米级电子器件的小型化对处理集成电路中量子力学效应的新的理论理解和实践策略提出了迫切的需求。这类问题的建模和仿真已成为应用数学和计算数学的重要课题。这项工作提出了用于模拟纳米级MOSFET的数学模型和计算算法。我们引入统一的两级能量函数来描述纳米电子器件的电子和连续静电势。这个框架使我们能够将纳米级的微观和宏观描述置于平等的地位。通过优化能量泛函,我们得出一致耦合的Poisson-Kohn-Sham方程。另外,分层结构对于纳米晶体管的静电和传输特性至关重要。提出了材料界面模型,以更精确地描述由Poisson方程控制的静电。最后,提出了一种新的利用狄拉克δ函数的个体掺杂剂模型,以了解纳米电子器件中的随机掺杂效应。引入了两种数学算法,即匹配接口和边界(MIB)方法和Dirichlet-to-Neumann映射(DNM)技术,以提高纳米器件仿真的计算效率。通过子带分解来计算电子结构,并通过非平衡格林函数(NEGF)形式主义来评估诸如I-V曲线和电子密度的传输特性。在我们的三维数值模拟中考虑了两种不同的器件配置,即双栅极MOSFET和四栅极MOSFET。对于这些器件,探索了由离散掺杂模型引起的电流波动和电压阈值降低效果。在目前的工作中还研究了数值收敛和模型的适定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号