...
首页> 外文期刊>Journal of combinatorial optimization >On the fractionality of the path packing problem Natalia Vanetik
【24h】

On the fractionality of the path packing problem Natalia Vanetik

机译:关于路径打包问题的分数阶Natalia Vanetik

获取原文
获取原文并翻译 | 示例

摘要

Given an undirected graph G = (N,E), a subset T of its nodes and an undirected graph (T, S), G and (T, S) together are often called a network. A collection of paths in G whose end-pairs lie in S is called an integer multiflow.When these paths are allowed to have fractional weight, under the constraint that the total weight of the paths traversing a single edge does not exceed 1, we have a fractional multiflow in G. The problems of finding the maximum weight of paths with end-pairs in S over all fractional multiflows in G is called the fractional path packing problem. In 1989, A. Karzanov had defined the fractionality of the fractional path packing problem for a class of networks {G, (T, S)} as the smallest natural D such that for any network from the class, the fractional path packing problem has a solution which becomes integer-valued when multiplied by D (see A. Karzanov in Linear Algebra Appl. 114-115:293-328, 1989). He proved that the fractional path packing problem has infinite fractionality outside a very specific class of networks, and conjectured that within this class, the fractionality does not exceed 4. A. Karzanov also proved that the fractionality of the path packing problem is at most 8 by studying the fractionality of the dual problem. Special cases of Karzanov's conjecture were proved in or are implied by the works of L.R. Ford and D.R. Fulkerson, Y. Dinitz, T.C. Hu, B.V. Cherkassky, L. Lov?sz and H. Hirai. We prove Karzanov's conjecture by showing that the fractionality of the path packing problem is at most 4. Our proof is stand-alone and does not rely on Karzanov's results.
机译:给定一个无向图G =(N,E),其节点的子集T和一个无向图(T,S),G和(T,S)一起通常称为网络。 G中末端对位于S的路径集合称为整数多流,当允许这些路径具有分数权重时,在穿过单个边的路径的总权重不超过1,的约束下,我们得到在G中所有分数多流中找到S中具有末端对的路径的最大权重的问题称为分数路径堆积问题。 1989年,A。Karzanov将一类网络{G,(T,S)}的分数路径打包问题的分数定义为最小自然D,因此对于该类网络中的任何网络,分数路径打包问题都具有当乘以D时变成整数值的解决方案(请参见1989年在Linear Algebra Appl。114-115:293-328中的A. Karzanov)。他证明了分数路径打包问题在非常特定的一类网络之外具有无限的分数阶,并推测在这一类中分数阶不超过4。A. Karzanov还证明了路径打包问题的分数阶最大为8通过研究对偶问题的分数。 L.R.的著作证明或暗含了Karzanov猜想的特殊情况。福特和D.R.富尔克森(美国)迪尼兹(T.C.) Hu B.V. Cherkassky,L.Lov?sz和H.Hirai。我们通过证明路径打包问题的分数不超过4来证明Karzanov的猜想。我们的证明是独立的,不依赖Karzanov的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号