首页> 外文期刊>Journal of chemical theory and computation: JCTC >Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics
【24h】

Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics

机译:复杂运动环大环的穷举构象采样的逆运动学

获取原文
获取原文并翻译 | 示例
           

摘要

Natural product and synthetic macrocycles are chemically and topologically diverse. An efficient, accurate, and general method for generating macrocycle conformations would enable structure-based design of macrocycle drugs or host-guest complexes. Computational sampling also provides insight into transiently populated states, complementing crystallographic and NMR data. Here, we report a new algorithm, BRIKARD, that addresses this challenge through computational algebraic geometry and inverse kinematics together with local energy minimization. BRIKARD is demonstrated on 67 diverse macrocycles with structural data, encompassing various ring topologies. We find this approach enumerates diverse structures with macrocyclic RMSD < 1.0 angstrom to the experimental conformation for 85% of our data set in contrast to success rates of 67-75% with other approaches, while for the subset of 21 more challenging compounds in the data set, these rates are 57% and 10-29%, respectively. Because the algorithm can be efficiently run in parallel on many processors, exhaustive conformational sampling of complex cycles can be obtained in minutes rather than hours: with a 40 processor implementation protocol, BRIKARD samples the conformational diversity of a potential energy landscape in a median of 1.3 minutes of wallclock time, much faster than 3.1-10.3 hours necessary with current programs. By rigorously testing BRIKARD on a broad range of scaffolds with highly complex ring systems, we push the frontiers of macrocycle sampling to encompass multiring compounds, including those with more than 50 ring atoms and up to seven interlaced flexible rings.
机译:天然产物和合成大环化合物在化学和拓扑上是多种多样的。一种高效,准确,通用的生成大环构象的方法将使大环药物或宿主-客体复合物的基于结构的设计成为可能。计算采样还提供了对瞬态填充状态的洞察力,补充了晶体学和NMR数据。在这里,我们报告了一种新算法BRIKARD,它通过计算代数几何和逆运动学以及局部能量最小化解决了这一难题。在具有结构数据的67个不同的大循环中论证了BRIKARD,这些数据涵盖了各种环形拓扑。我们发现这种方法列举了85%的数据集的大环RMSD <1.0埃的多样化结构与实验构象,而其他方法的成功率为67-75%,而数据中21种更具挑战性的化合物的子集设定的比率分别为57%和10-29%。由于该算法可以在许多处理器上有效地并行运行,因此可以在数分钟而不是数小时内获得详尽的复杂周期构象采样:使用40个处理器实现协议,BRIKARD以1.3的中值采样势能格局的构象多样性。分钟的挂钟时间,比当前程序所需的3.1-10.3小时要快得多。通过在具有高度复杂环系统的各种支架上严格测试BRIKARD,我们推动了大环采样的前沿,以涵盖多环化合物,包括具有50个以上环原子和最多七个交错的柔性环的化合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号