...
首页> 外文期刊>Journal of chemical theory and computation: JCTC >Rapid Prediction of Solvation Free Energy. 2. The First-Shell Hydration (FiSH) Continuum Model
【24h】

Rapid Prediction of Solvation Free Energy. 2. The First-Shell Hydration (FiSH) Continuum Model

机译:溶剂自由能的快速预测。 2.第一壳水化(FiSH)连续谱模型

获取原文
获取原文并翻译 | 示例
           

摘要

Local ordering of water in the first hydration shell around a solute is different from isotropic bulk water. This leads to effects that are captured by explicit solvation models and missed by continuum solvation models which replace the explicit waters with a continuous medium. In this paper, we introduce the First-Shell Hydration (FiSH) model as a first attempt to introduce first-shell effects within a continuum solvation framework. One such effect is charge asymmetry, which is captured by a modified electrostatic term within the FiSH model by introducing a nonlinear correction of atomic Born radii based on the induced surface charge density. A hybrid van der Waals formulation consisting of two continuum zones has been implemented. A shell of water restricted to and uniformly distributed over the solvent-accessible surface (SAS) represents the first solvation shell. A second region starting one solvent diameter away from the SAS is treated as bulk water with a uniform density function. Both the electrostatic and van der Waals terms of the FiSH model have been calibrated against linear interaction energy (LIE) data from molecular dynamics simulations. Extensive testing of the FiSH model was carried out on large hydration data sets including both simple compounds and drug-like molecules. The FiSH model accurately reproduces contributing terms, absolute predictions relative to experimental hydration free energies, and functional class trends of LIE MD simulations. Overall, the implementation of the FiSH model achieves a very acceptable performance and transferability improving over previously developed solvation models, while being complemented by a sound physical foundation.
机译:第一水化壳中溶质周围水的局部排序与各向同性散装水不同。这导致显式溶剂化模型捕获了效果,而连续介质化模型错过了这种效果,该模型用连续介质代替显式水。在本文中,我们介绍了第一壳水合(FiSH)模型,这是在连续溶剂化框架内引入第一壳效应的首次尝试。一种这样的效应是电荷不对称性,它是通过引入基于感应的表面电荷密度的原子Born半径的非线性校正,在FiSH模型中由修改的静电项捕获的。由两个连续区域组成的范德华混合公式已得到实施。被限制并均匀分布在溶剂可及表面(SAS)上的水壳代表了第一个溶剂化壳。从一个溶剂直径开始距离SAS的第二个区域被视为具有均匀密度函数的散装水。 FiSH模型的静电和范德华力项均已根据分子动力学模拟的线性相互作用能(LIE)数据进行了校准。 FiSH模型的广泛测试是在包括简单化合物和类药物分子在内的大型水合数据集上进行的。 FiSH模型准确地再现了贡献项,相对于实验水合自由能的绝对预测以及LIE MD模拟的功能分类趋势。总的来说,与以前开发的溶剂化模型相比,FiSH模型的实现实现了非常令人满意的性能和可传递性,同时还具有良好的物理基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号