首页> 外文期刊>Journal of chemical theory and computation: JCTC >Effect of the Integration Method on the Accuracy and Computational Efficiency of Free Energy Calculations Using Thermodynamic Integration
【24h】

Effect of the Integration Method on the Accuracy and Computational Efficiency of Free Energy Calculations Using Thermodynamic Integration

机译:积分方法对使用热力学积分计算自由能的准确性和计算效率的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Although calculations of free energy using molecular dynamics simulations have gained significant importance in the chemical and biochemical fields, they still remain quite computationally intensive. Furthermore, when using thermodynamic integration, numerical evaluation of the integral of the Hamiltonian with respect to the coupling parameter may introduce unwanted errors in the free energy. In this paper, we compare the performance of two numerical integration techniques—the trapezoidal and Simpson's rules—and propose a new method, based on the analytic integration of physically based fitting functions that are able to accurately describe the behavior of the data. We develop and test our methodology by performing detailed studies on two prototype systems, hydrated methane and hydrated methanol, and treat Lennard-Jones and electrostatic contributions separately. We conclude that the widely used trapezoidal rule may introduce systematic errors in the calculation, but these errors are reduced if Simpson's rule is employed, at least for the electrostatic component. Furthermore, by fitting thermodynamic integration data, we are able to obtain precise free energy estimates using significantly fewer data points (5 intermediate states for the electrostatic component and 11 for the Lennard-Jones term), thus significantly decreasing the associated computational cost. Our method and improved protocol were successfully validated by computing the free energy of more complex systems—hydration of 2-methylbutanol and of 4-nitrophenol—thus paving the way for widespread use in solvation free energy calculations of drug molecules.
机译:尽管使用分子动力学模拟计算自由能在化学和生化领域中已变得非常重要,但它们仍然需要大量的计算工作。此外,当使用热力学积分时,关于耦合参数的哈密顿积分的数值评估可能会在自由能中引入不必要的误差。在本文中,我们比较了梯形和Simpson规则这两种数值积分技术的性能,并在基于物理拟合函数的解析积分基础上提出了一种新方法,该方法能够准确地描述数据的行为。我们通过对两种原型系统(水合甲烷和水合甲醇)进行详细研究来开发和测试方法,并分别处理Lennard-Jones和静电作用。我们得出的结论是,广泛使用的梯形法则可能会在计算中引入系统误差,但如果使用辛普森法则(至少对于静电分量而言),这些误差会减少。此外,通过拟合热力学积分数据,我们能够使用少得多的数据点(对于静电成分为5个中间状态,对于Lennard-Jones项为11个中间状态)获得精确的自由能估计,从而显着降低了相关的计算成本。通过计算更复杂系统的自由能(2-甲基丁醇和4-硝基苯酚的水合)成功验证了我们的方法和改进的方案,从而为广泛用于药物分子的溶剂化自由能计算铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号