首页> 外文期刊>Journal of biomedical materials research. Part B, Applied biomaterials. >3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications
【24h】

3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications

机译:3D支架改变了骨科应用中聚合物复合物中对石墨烯的细胞反应

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81 degrees to 87 degrees whereas GO decreased it to 77 degrees. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016.
机译:正在研究基于石墨烯的聚合物纳米复合材料的生物医学应用。可以对聚合物纳米复合材料进行不同的处理,以生成平面二维(2D)基材和多孔三维(3D)支架。这项工作的目的是研究2D基质和3D支架形式的聚合物复合材料对石墨烯的生物学反应的潜在差异。聚己内酯(PCL)纳米复合材料是通过掺入1%的氧化石墨烯(GO)和还原的氧化石墨烯(RGO)制备的。 GO分别使PCL的模量和强度增加了44%和22%,而RGO分别使PCL的模量和强度增加了22%和16%。 RGO将PCL的水接触角从81度增加到87度,而GO将其降低到77度。在2D模式下,GO复合材料上的成骨细胞增殖比PCL上多15%,而RGO复合材料的细胞增殖下降了17%,这可能归因于水润湿性的差异。在3D中,由于存在突出的纳米颗粒,导致粗糙度增加,GO(降低36%)和RGO(降低55%)复合材料的初始细胞增殖受到明显阻碍。由于支架的大孔结构,与2D光盘上的散布和随机分布的细胞相比,细胞以3D形式组织为聚集体。细胞间接触的增加和细胞形态的改变导致3D矿化程度显着提高。这项研究表明,复合材料中纳米颗粒的细胞反应可以通过改变加工路径而发生显着变化,并且对使用这种纳米复合材料设计骨科植入物(例如可吸收性骨折固定装置和组织支架)具有重要意义。 (c)2015 Wiley Periodicals,Inc.J Biomed Mater Res Part B:Appl Biomater,104B:732-749,2016年。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号