首页> 外文会议>Materials Research Society Symposium on Biosurfaces and Biointerfaces >Ceramic/Polymer Nanocomposite Tissue Engineering Scaffolds for More Effective Orthopedic Applications: From 2D Surfaces to Novel 3D Architectures
【24h】

Ceramic/Polymer Nanocomposite Tissue Engineering Scaffolds for More Effective Orthopedic Applications: From 2D Surfaces to Novel 3D Architectures

机译:陶瓷/聚合物纳米复合材料组织工程脚手架用于更有效的骨科应用:从2D表面到新的3D架构

获取原文

摘要

Ceramic/polymer nanocomposites simulate bone much closer in terms of its nanostructure and associated properties, thus, offering a promising opportunity for bone regeneration in a natural way. Previous studies demonstrated improved osteoblast (bone-forming cell) adhesion and long-term functions (such as alkaline phosphatase activity and calcium-containing mineral deposition) on nanometer scale surface roughness provided by well-dispersed titania nanoparticles in poly-lactide-co-glycolide (PLGA). For example, the nanocomposites with the closest surface roughness to natural bone at the nano-scale promoted the most bone cell adhesion and calcium deposition. The current studies focus on further mimicking bone by building three-dimensional structures from titania/PLGA nanocomposites using a novel aerosol based 3D printing technique (one type of rapid prototyping technique, because, similarly, natural bone assembles its three-dimensional hierarchical architecture from nanostructured building blocks). Using this technique, bone fracture data acquired by computed tomography (CT) can be transferred into CAD models and used to direct the fabrication of versatile bone substitutes. Field emission scanning electron microscopy (FESEM) was used to characterize the structure and surface features of these 3D scaffolds. The results demonstrated that 3D printed nano-scaffolds had a well-controlled, repeatable inner structure and, moreover, possessed uniformly dispersed titania nanoparticles which provided for nano-scale surface features throughout the PLGA matrix. Osteoblast adhesion tests were conducted on the 3D titania/PLGA nanocomposite scaffolds created by this technique and the results demonstrated that these 3D scaffolds further promoted osteoblast infiltration into porous structures compared to previous nanostructured surfaces. In conclusion, results of this study have evaluated a promising new orthopedic nanocomposite and a means of fabricating a hierarchical macro-structure from such nanomaterials that can mimic properties of natural bone, thus, providing a new material and approach for more effective orthopedic applications.
机译:陶瓷/聚合物纳米复合材料在其纳米结构和相关性能方面模拟骨骼更接近,因此为自然方式提供了有希望的骨再生机会。以前的研究表明,通过在聚丙交酯 - 共乙酰胺中的良好分散的二氧化钛纳米颗粒提供的纳米刻度表面粗糙度上改善了成骨细胞(骨形成细胞)粘​​附和长期功能(例如碱性磷酸酶活性和含钙矿物沉积) (PLGA)。例如,在纳米级以最近的表面粗糙度与天然骨骼的纳米复合材料促进了最多的骨细胞粘附和钙沉积。目前的研究专注于通过使用新型气溶胶基3D印刷技术(一种快速原型技术,因为,类似的自然骨从纳米结构组装其三维等级架构,通过构建来自二氧化钛/ PLGA纳米复合材料的三维结构进一步模仿骨建筑模块)。使用该技术,可以将计算机断层扫描(CT)获取的骨骨折数据转移到CAD模型中并用于指示通用骨替代品的制造。场发射扫描电子显微镜(FESEM)用于表征这些3D支架的结构和表面特征。结果表明,3D印刷的纳米支架具有良好控制的可重复的内部结构,而且,此外,具有均匀分散的二氧化钛纳米颗粒,其提供整个PLGA基质的纳米级表面特征。在通过该技术产生的3D二氧化钛/ PLGA纳米复合材料支架上进行了成骨细胞粘附试验,结果表明,与先前的纳米结构表面相比,这些3D支架进一步将成骨细胞浸润促进到多孔结构中。总之,本研究的结果已经评估了具有可以模仿天然骨的性质的纳米材料制造分层宏观结构的有希望的新的整形外科纳米复合材料,从而提供了一种用于更有效的整形外科应用的新材料和方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号