首页> 外文期刊>Journal of biomechanical engineering. >Knee Joint Secondary Motion Accuracy Improved by Quaternion-Based Optimizer With Bony Landmark Constraints
【24h】

Knee Joint Secondary Motion Accuracy Improved by Quaternion-Based Optimizer With Bony Landmark Constraints

机译:基于四元数的具有Bony Landmark约束的优化器提高了膝关节的二次运动精度

获取原文
获取原文并翻译 | 示例
       

摘要

Skin marker-based motion analysis has been widely used in biomechanical studies and clinical applications. Unfortunately, the accuracy of knee joint secondary motions is largely limited by the nonrigidity nature of human body segments. Numerous studies have investigated the characteristics of soft tissue movement. Utilizing these characteristics, we may improve the accuracy of knee joint motion measurement. An optimizer was developed by incorporating the soft tissue movement patterns at special bony landmarks into constraint functions. Bony landmark constraints were assigned to the skin markers at femur epicondyles, tibial plateau edges, and tibial tuberosity in a motion analysis algorithm by limiting their allowed position space relative to the underlying bone. The rotation matrix was represented by quaternion, and the constrained optimization problem was solved by Fletcher's version of the Levenberg-Marquardt optimization technique. The algorithm was validated by using motion data from both skin-based markers and bone-mounted markers attached to fresh cadavers. By comparing the results with the ground truth bone motion generated from the bone-mounted markers, the new algorithm had a significantly higher accuracy (root-mean-square (RMS) error: 0.7 ± 0.1 deg in axial rotation and 0.4 ± 0.1 deg in varus-valgus) in estimating the knee joint secondary rotations than algorithms without bony landmark constraints (RMS error: 1.7 ± 0.4 deg in axial rotation and 0.7 ± 0.1 deg in varus-valgus). Also, it predicts a more accurate medial-lateral translation (RMS error: 0.4 ± 0.1 mm) than the conventional techniques (RMS error: 1.2 ± 0.2 mm). The new algorithm, using bony landmark constrains, estimates more accurate secondary rotations and medial-lateral translation of the underlying bone.
机译:基于皮肤标记的运动分析已广泛用于生物力学研究和临床应用。不幸的是,膝关节二次运动的准确性在很大程度上受到人体节段非刚性性质的限制。许多研究已经研究了软组织运动的特征。利用这些特性,我们可以提高膝关节运动测量的准确性。通过将特殊的骨骼界标处的软组织运动模式合并到约束函数中来开发优化器。在运动分析算法中,通过限制相对于下层骨骼的允许位置空间,将骨性界标约束条件分配给股骨上con,胫骨平台边缘和胫骨结节处的皮肤标记。旋转矩阵由四元数表示,约束优化问题由Fletcher版本的Levenberg-Marquardt优化技术解决。通过使用来自基于皮肤的标记和附着在新鲜尸体上的骨固定标记的运动数据对算法进行了验证。通过将结果与从安装在骨上的标记生成的地面真实骨骼运动进行比较,新算法具有更高的精度(均方根(RMS)误差:轴向旋转时为0.7±0.1度,在轴向旋转时为0.4±0.1度。与没有骨标志约束的算法(RMS误差:轴向旋转为1.7±0.4度,内翻为0.7±0.1度)相比,膝外翻的估计要多得多。此外,它还预测了比传统技术(RMS误差:1.2±0.2 mm)更准确的内侧-外侧平移(RMS误差:0.4±0.1 mm)。新的算法使用骨性界标约束来估计更精确的二次旋转和基础骨骼的内侧-外侧平移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号