...
首页> 外文期刊>Journal of biological inorganic chemistry: JBIC: a publication of the Society of Biological Inorganic Chemistry >A comparison of two-electron chemistry performed by the manganese and iron heterodimer and homodimers
【24h】

A comparison of two-electron chemistry performed by the manganese and iron heterodimer and homodimers

机译:锰和铁异二聚体和同二聚体进行的两电子化学比较

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Two-electron chemistry with an iron dimer, a manganese dimer, and a manganese-iron dimer as a catalyst has been modeled using B3LYP* hybrid density functional theory. The recently discovered MnFe proteins form (at least) two functionally distinct groups, performing radical generation (class Ic ribonucleotide reductase subunit II) and substrate oxidations (subunit II-like ligand-binding oxidases, R2lox), respectively. Proteins from the latter group appear to be functionally similar to the diiron carboxylate proteins that perform two-electron oxidations of substrates, such as methane monooxygenase. To qualitatively determine the potential role of a MnFe center in R2lox, methane hydroxylation with the MnFe heterodimer and with the FeFe and MnMn homodimers is studied. The redox potential of the active state of the Mn(IV)Fe(IV) heterodimer is about 7 kcal mol ?1 lower than that of the active state of the Fe(IV)Fe(IV) homodimer, leading to a high barrier for the rate-limiting hydrogen abstraction with the MnFe site. If the entropy loss is not included, the barriers are lower, and the MnFe heterodimer can therefore have a role in R2lox as an oxidase for larger substrates exergonically bound to the protein. A MnMn center has a high barrier both with and without entropy loss. The higher stability of Fe(IV) in the presence of Mn(IV) in the other site compared with a second Fe(IV) suggests an explanation for the presence of the MnFe site in R2lox: to provide a metal center that is capable of two-electron chemistry, and which is more stable and less sensitive to external reductants than an Fe(IV)Fe(IV) site.
机译:使用B3LYP *杂化密度泛函理论对铁二聚体,锰二聚体和锰铁二聚体作为催化剂的双电子化学进行了建模。最近发现的MnFe蛋白形成(至少)两个功能不同的基团,分别进行自由基生成(Ic类核糖核苷酸还原酶亚基II)和底物氧化(亚基II样配体结合氧化酶,R2lox)。来自后一组的蛋白质似乎在功能上类似于对底物进行双电子氧化的二铁羧酸盐蛋白质,例如甲烷单加氧酶。为了定性确定MnFe中心在R2lox中的潜在作用,研究了MnFe异二聚体以及FeFe和MnMn均二聚体的甲烷羟基化作用。 Mn(IV)Fe(IV)异二聚体的活性态的氧化还原电势比Fe(IV)Fe(IV)均二聚体的活性态的氧化还原电势低约7 kcal molα1。 MnFe位的限速氢提取。如果不包括熵损失,则壁垒较低,因此MnFe异二聚体可在R2lox中作为与酶结合的较大底物的氧化酶起作用。 MnMn中心在有和没有熵损失的情况下都具有高势垒。与第二个Fe(IV)相比,在另一个位点中存在Mn(IV)时,Fe(IV)的稳定性更高,这说明了R2lox中MnFe位置的存在:提供了一个能够双电子化学,比Fe(IV)Fe(IV)位置更稳定,对外部还原剂更不敏感。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号