首页> 外文期刊>Journal of Advanced Computatioanl Intelligence and Intelligent Informatics >Improving Ant Colony Optimization Algorithms for Solving Traveling Salesman Problems
【24h】

Improving Ant Colony Optimization Algorithms for Solving Traveling Salesman Problems

机译:改进的蚁群优化算法求解旅行商问题

获取原文
获取原文并翻译 | 示例

摘要

Ant colony optimization (ACO) has been successfully applied to solve combinatorial optimization problems, but it still has some drawbacks such as stagnation behavior, long computational time, and premature convergence. These drawbacks will be more evident when the problem size increases. In this paper, we reported the analysis of using a lower pheromone trail bound and a dynamic updating rule for the heuristic parameters based on entropy to improve the efficiency of ACO in solving Traveling Salesman Problems (TSPs). TSPs are NP-hard problem. Even though the problem itself is simple, when the number of city is large, the search space will become extremely large and it becomes very difficult to find the optimal solution in a short time. From our experiments, it can be found that the proposed algorithm indeed has superior search performance over traditional ACO algorithms do.
机译:蚁群优化(ACO)已经成功地用于解决组合优化问题,但是它仍然具有诸如停滞行为,计算时间长和收敛过早的缺点。当问题规模增加时,这些缺点将更加明显。在本文中,我们报告了使用较低的信息素线索边界和基于熵的启发式参数的动态更新规则来提高ACO求解旅行商问题(TSP)的效率的分析。 TSP是NP难题。即使问题本身很简单,但是当城市数量很大时,搜索空间将变得非常大,并且很难在短时间内找到最佳解决方案。从我们的实验中可以发现,提出的算法确实比传统的ACO算法具有更好的搜索性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号