首页> 外文期刊>The Plant Cell >A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants.
【24h】

A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants.

机译:在丛枝菌根真菌 Glomus sp中起作用的通用单糖转运蛋白对于与植物的共生关系至关重要。

获取原文
获取原文并翻译 | 示例
           

摘要

For more than 400 million years, plants have maintained a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi. This evolutionary success can be traced to the role of these fungi in providing plants with mineral nutrients, particularly phosphate. In return, photosynthates are given to the fungus, which support its obligate biotrophic lifestyle. Although the mechanisms involved in phosphate transfer have been extensively studied, less is known about the reciprocal transfer of carbon. Here, we present the high-affinity Monosaccharide Transporter2 (MST2) from Glomus sp with a broad substrate spectrum that functions at several symbiotic root locations. Plant cell wall sugars can efficiently outcompete the Glc uptake capacity of MST2, suggesting they can serve as alternative carbon sources. MST2 expression closely correlates with that of the mycorrhiza-specific Phosphate Transporter4 (PT4). Furthermore, reduction of MST2 expression using host-induced gene silencing resulted in impaired mycorrhiza formation, malformed arbuscules, and reduced PT4 expression. These findings highlight the symbiotic role of MST2 and support the hypothesis that the exchange of carbon for phosphate is tightly linked. Unexpectedly, we found that the external mycelium of AM fungi is able to take up sugars in a proton-dependent manner. These results imply that the sugar uptake system operating in this symbiosis is more complex than previously anticipated.Digital Object Identifier http://dx.doi.org/10.1105/tpc.111.089813
机译:超过4亿年来,植物与丛枝菌根(AM)真菌保持了共生共生。这种进化的成功可以追溯到这些真菌在为植物提供矿物质营养素,尤其是磷酸盐方面的作用。作为回报,将光合产物给予真菌,以支持其专性的生物营养型生活方式。尽管已经广泛研究了涉及磷酸盐转移的机理,但对碳的相互转移知之甚少。在这里,我们介绍了来自 Glomus sp的高亲和力单糖转运蛋白2(MST2),其底物光谱范围广,可在多个共生根位置起作用。植物细胞壁糖可以有效地超过MST2对Glc的吸收能力,表明它们可以用作替代碳源。 MST2 的表达与菌根特异性磷酸盐转运蛋白4 ( PT4 )的表达密切相关。此外,使用宿主诱导的基因沉默降低 MST2 的表达会导致菌根形成受损,丛枝畸形和降低 PT4 的表达。这些发现强调了MST2的共生作用,并支持了碳与磷酸盐的交换紧密相连的假设。出乎意料的是,我们发现AM真菌的外部菌丝体能够以质子依赖性方式吸收糖。这些结果表明,在这种共生中运行的糖吸收系统比以前预期的要复杂。数字对象标识符http://dx.doi.org/10.1105/tpc.111.089813

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号