首页> 外文期刊>The Journal of Experimental Biology >The mechanics of azimuth control in jumping by froghopper insects
【24h】

The mechanics of azimuth control in jumping by froghopper insects

机译:蛙跳虫控制方位角的力学

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Many animals move so fast that there is no time for sensory feedback to correct possible errors. The biomechanics of the limbs participating in such movements appear to be configured to simplify neural control. To test this general principle, we analysed how froghopper insects control the azimuth direction of their rapid jumps, using high speed video of the natural movements and modelling to understand the mechanics of the hind legs. We show that froghoppers control azimuth by altering the initial orientation of the hind tibiae; their mean angle relative to the midline closely predicts the take-off azimuth. This applies to jumps powered by both hind legs, or by one hind leg. Modelling suggests that moving the two hind legs at different times relative to each other could also control azimuth, but measurements of natural jumping showed that the movements of the hind legs were synchronised to within 32 mu s of each other. The maximum timing difference observed (67 mu s) would only allow control of azimuth over 0.4. deg. to either side of the midline. Increasing the timing differences between the hind legs is also energetically inefficient because it decreases the energy available and causes losses of energy to body spin; froghoppers with just one hind leg spin six times faster than intact ones. Take-off velocities also fall. The mechanism of azimuth control results from the mechanics of the hind legs and the resulting force vectors of their tibiae. This enables froghoppers to have a simple transform between initial body position and motion trajectory, therefore potentially simplifying neural control.
机译:许多动物运动得如此之快,以至于没有时间进行感官反馈来纠正可能的错误。参与这种运动的肢体的生物力学似乎被配置为简化神经控制。为了测试该一般原理,我们使用自然运动的高速视频和建模来了解后腿的力学原理,从而分析了蛙蛙昆虫如何控制其快速跳跃的方位方向。我们表明,hopper蛙通过改变后胫骨的初始方向来控制方位角。它们相对于中线的平均角度紧密地预测了起飞方位角。这适用于由两条后腿或一条后腿提供动力的跳跃。建模表明,在不同时间移动两条后腿也可以控制方位角,但是自然跳跃的测量结果表明,后腿的运动在彼此之间32毫秒内同步。观察到的最大时序差异(67μs)将只能控制超过0.4的方位角。度到中线的两侧。增加后腿之间的时间差在能量上也很低效,因为这会减少可用能量并导致身体旋转损失能量。仅一只后腿的蛙蛙旋转速度比完整蛙蛙快六倍。起飞速度也下降。方位角控制的机制是由后腿的力学及其胫骨的力矢量产生的。这使蛙蛙可以在初始身体位置和运动轨迹之间进行简单的转换,因此有可能简化神经控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号