...
首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Surface Chemistry of SO_2 on Zn and ZnO: Photoemission and Molecular Orbital Studies
【24h】

Surface Chemistry of SO_2 on Zn and ZnO: Photoemission and Molecular Orbital Studies

机译:Zn和ZnO上SO_2的表面化学:光发射和分子轨道研究

获取原文
获取原文并翻译 | 示例
           

摘要

The reaction of SO_2 with polycrystalline Zn and ZnO surfaces has been investigated using synchrotron-based high-resolution photoemission spectroscopy and ab initio self-consistent-field calculations. The chemistry of SO_2 on Zn surfaces in quite complex and depends on both the temperature of adsorption and the SO_2 exposure. At 300 K, SO_2 dissociates on a clean Zn surface to form atomic sulfur and atomic oxygen (SO_(2,gas) → S_a + 20_a; SO_(2,gas) → SO_(gas) + O_a). The Zn <-> SO_2 bonding interactions induce a significant weakening of the S-O bonds. The theoretical calculations suggest the η~2-O,O and η~2-S,O binding conformations of SO_2 as the two possible precursors for the dissociation of the molecule. The dissociation reactions are more exothermic than the formation of SO_3 or SO_4: SO_(2,gas) + nO_a → SO_x, where x = 3 or 4. At high SO_2 exposures (300 K), when most surface sites are blocked and dissociation of SO_2 cannot occur, SO_3 and SO_4 are formed on the Zn surface. Adsorption at 100 K suppresses the SO_2 dissociation completely, and SO_3 is formed through the disproportionation reaction 2SO_(2,a) → SO_(3,a). Zn shows a much higher reactivity toward SO__2 than late transition metals. All the results for the reaction of SO_2 with ZnO surfaces indicate oxygen to be the active site. The Zn-O bonds in ZnO substantially reduce the electron density of zinc, the metal centers become poor electron donors for π-back-donation into the LUMO of SO_2, and the molecule mostly bonds to the oxygen sites of the oxide surface. Dosing SO_2 on ZnO at 300 K results in the formation of surface SO_4 species, which are stable to temperatures above 500 K. Results from the ab initio SCF calculations indicate that SO_2 adsorbs on an oxygen site to form SO_3, which then reacts with a lattice oxygen atom to form SO_4. The last step in this process has a substantial activation energy, and after dosing SO_2 to ZnO at 100 K a mixture of SO_3 and SO_4 is produced on the surface.
机译:使用基于同步加速器的高分辨率光发射光谱和从头算自洽场研究了SO_2与多晶Zn和ZnO表面的反应。 Zn表面上的SO_2的化学性质非常复杂,取决于吸附温度和SO_2暴露量。在300 K下,SO_2在干净的Zn表面上解离形成原子硫和原子氧(SO_(2,gas)→S_a + 20_a; SO_(2,gas)→SO_(gas)+ O_a)。 Zn-SO_2键的相互作用引起S-O键的显着减弱。理论计算表明,SO_2的η〜2-O,O和η〜2-S,O结合构型是分子解离的两种可能的前体。离解反应比SO_3或SO_4的形成更放热:SO_(2,gas)+ nO_a→SO_x,其中x = 3或4。在高SO_2暴露(300 K)下,当大多数表面位点被阻塞并分解时,不能发生SO_2,在Zn表面形成SO_3和SO_4。在100 K下的吸附完全抑制了SO_2的离解,并且通过歧化反应2SO_(2,a)→SO_(3,a)形成了SO_3。与后期过渡金属相比,Zn对SO_2的反应活性高得多。 SO_2与ZnO表面反应的所有结果均表明氧是活性位点。 ZnO中的Zn-O键显着降低了锌的电子密度,金属中心成为π背向SO_2的LUMO的弱电子供体,并且该分子大部分键合至氧化物表面的氧位。在300 K的剂量下在ZnO上添加SO_2导致形成表面SO_4物种,该物种对温度超过500 K稳定。从头算SCF计算结果表明SO_2吸附在氧位上形成SO_3,然后与晶格反应氧原子形成SO_4。该过程的最后一步具有相当大的活​​化能,在以100 K的剂量将SO_2注入ZnO之后,在表面上生成了SO_3和SO_4的混合物。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号