class='head no_bottom_margin' id='sec1title'>Int'/> Mapping Shunting Paths at the Surface of Cu2ZnSn(SSe)4 Films via Energy-Filtered Photoemission Microscopy
首页> 美国卫生研究院文献>iScience >Mapping Shunting Paths at the Surface of Cu2ZnSn(SSe)4 Films via Energy-Filtered Photoemission Microscopy
【2h】

Mapping Shunting Paths at the Surface of Cu2ZnSn(SSe)4 Films via Energy-Filtered Photoemission Microscopy

机译:能量过滤光电子显微镜在Cu2ZnSn(SSe)4薄膜表面绘制分流路径

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

class="head no_bottom_margin" id="sec1title">IntroductionThin-film photovoltaic (PV) solar cells comprise approximately 10% of the PV installed capacity worldwide (, ). Considering the exponential increase in the PV market over the last 10 years, it is crucial to develop new scalable technologies based on low-cost earth-abundant materials (, ). Cu2ZnSn(S,Se)4 (CZTSSe) largely fulfills the key requirements in terms of optical properties, electronic structure, Earth abundance, and stability, although device power conversion efficiency (η) has been limited by low open-circuit voltage (VOC) and fill factor (FF) (, , , ). The most efficient cells certified to date, with a band gap of 1.1 eV, have shown VOC values of 513 mV (η = 12.6%) (), 521 mV (η = 12.3%) (), and 670 mV (11.9%) (). These cells have been fabricated by physical vapor deposition () as well as solution-based methods (), suggesting that key power conversion losses are linked to intrinsic material properties rather than the preparation method.Low VOC values have been linked to non-optimal band alignment at CZTSSe/CdS boundary as well as elemental disorder in CZTSSe, mainly point defects such as CuZn antisites (, ). Clustering of these point defects into domains can lead to potential energy fluctuations, which manifest themselves as band tails. Broadening and complex temperature dependence of photoluminescence responses provide the clearest manifestation of band tails in these materials (href="#bib51" rid="bib51" class=" bibr popnode">Tiwari et al., 2017b). Elemental disorder has also been investigated by X-ray and neutron diffraction (href="#bib42" rid="bib42" class=" bibr popnode">Schorr, 2011, href="#bib52" rid="bib52" class=" bibr popnode">Tobbens et al., 2016), as well as solid-state nuclear magnetic resonance (href="#bib34" rid="bib34" class=" bibr popnode">Paris et al., 2015). On the other hand, density functional theory (DFT) analysis also predicts that Sn disorder may generate states deeper in the band gap, which may act as recombination centers (href="#bib10" rid="bib10" class=" bibr popnode">Chen et al., 2009). Recently, we have shown the presence of Sn antisite domain boundaries in CZTS nanostructures employing atomic-resolution transmission electron microscopy (href="#bib25" rid="bib25" class=" bibr popnode">Kattan et al., 2016). Nanoscale domains of secondary phases have also been observed employing atom-probe tomography (href="#bib47" rid="bib47" class=" bibr popnode">Tajima et al., 2014) and high-resolution cathodoluminescence (href="#bib30" rid="bib30" class=" bibr popnode">Mendis et al., 2018). Systematic approaches to reduce bulk composition disorder via controlled annealing and the introduction of additives (e.g., alkali metal, Ag, Cd, Ge, and Sb) have led to improvement in device efficiency, yet VOC values remain in the 500–600 mV range (href="#bib22" rid="bib22" class=" bibr popnode">Johnson et al., 2014, href="#bib27" rid="bib27" class=" bibr popnode">Kumar et al., 2015, href="#bib46" rid="bib46" class=" bibr popnode">Su et al., 2015, href="#bib49" rid="bib49" class=" bibr popnode">Tiwari et al., 2016, href="#bib37" rid="bib37" class=" bibr popnode">Qi et al., 2017, href="#bib18" rid="bib18" class=" bibr popnode">Giraldo et al., 2018, href="#bib39" rid="bib39" class=" bibr popnode">Sai Gautam et al., 2018). These observations have focused our attention away from bulk and into interfacial defects as the key factor determining voltage losses, which is emphasized by the fact that little is known about the surface structure of these complex materials.Experimental evidences have shown the importance of understanding the structure of the buried junctions involving the absorber layer, namely, the Mo/CZTSSe and the CZTSSe/CdS interfaces. For instance, Haight and co-workers exfoliated CZTSSe cells from the Mo back-contact and mechanically reconnected them achieving a substantial increase in power conversion efficiency (href="#bib1" rid="bib1" class=" bibr popnode">Antunez et al., 2017a). This is due to the partial selenization of the Mo film during the thermal annealing step. However, investigating the CZTSSe/CdS boundary with the penetration depth offered by photoemission spectroscopy is significantly challenging (href="#bib4" rid="bib4" class=" bibr popnode">Bär et al., 2017).In this work, we employ for the first time sub-micron-resolution energy-filtered photoemission microscopy (EF-PEEM) to examine the complex and poorly understood surface electronic structure of CZTSSe thin films. Our investigation focuses on thin films generated by annealing of molecular precursors, which are characterized by a high degree of crystallinity and phase purity and power conversion efficiencies of 5.7% under AM 1.5G illumination (href="#bib51" rid="bib51" class=" bibr popnode">Tiwari et al., 2017b). Photoemission maps show a distribution in the onset energy of secondary electron emission, which we rationalized in terms of local effective work functions (LEWF). Analysis of the valence band spectra, supported by DFT supercell calculations, provides a strong link between the most prominent LEWF features and the main CZTSSe phase. The photoemission landscape also unveils sub-micron domains of low LEWF, acting as shunting path for photogenerated electrons. Local valence band spectrum reveals that these photoemission hotspots correspond to Sn(S,Se) surface domains. We conclude that these surface domains, not detectable by conventional spectroscopic and diffraction techniques, can play a substantial role in the voltage losses in devices.
机译:<!-fig ft0-> <!-fig @ position =“ anchor” mode =文章f4-> <!-fig mode =“ anchred” f5-> <!-fig / graphic | fig / alternatives / graphic mode =“ anchored” m1-> class =“ head no_bottom_margin” id =“ sec1title”>简介薄膜光伏(PV)太阳能电池约占PV装机容量的10%全球(,)。考虑到过去10年中光伏市场的指数增长,至关重要的是开发基于低成本地球富含材料的新型可扩展技术。尽管器件功率转换效率(η)受低开路电压(VOC)的限制,但Cu2ZnSn(S,Se)4(CZTSSe)在光学性能,电子结构,地球丰度和稳定性方面基本满足了关键要求。和填充因子(FF)(、、、、)。迄今认证的最高效电池,带隙为1.1 eV,VOC值显示为513mV(η= 12.6%)(),521 mV(η= 12.3%)()和670 mV(11.9%) ()。这些电池是通过物理气相沉积()和基于溶液的方法()制造的,这表明关键的功率转换损耗与材料的固有特性有关,而不是与制备方法有关。低VOC值与非最佳谱带有关CZTSSe / CdS边界处的对齐以及CZTSSe中的元素无序,主要是点缺陷,例如CuZn反位点(,)。将这些点缺陷聚集到域中可能导致潜在的能量波动,这些能量波动表现为带尾。光致发光响应的增宽和复杂的温度依赖性在这些材料中提供了带尾的最清楚的表现(href="#bib51" rid="bib51" class=" bibr popnode"> Tiwari等人,2017b ) 。元素紊乱也已通过X射线和中子衍射进行了研究(href="#bib42" rid="bib42" class=" bibr popnode"> Schorr,2011 ,href =“#bib52” rid =“ bib52” class =“ bibr popnode”> Tobbens等人,2016 ),以及固态核磁共振(href =“#bib34” rid =“ bib34” class =“ bibr popnode“>巴黎等人,2015 )。另一方面,密度泛函理论(DFT)分析还预测,Sn病可能会在带隙中产生更深的状态,从而可能成为重组中心(href =“#bib10” rid =“ bib10” class =“ bibr popnode“> Chen等,2009 )。最近,我们使用原子分辨率透射电子显微镜显示了CZTS纳米结构中Sn反位域边界的存在(href="#bib25" rid="bib25" class=" bibr popnode"> Kattan等人,2016 < / a>)。使用原子探针层析成像技术(href="#bib47" rid="bib47" class=" bibr popnode"> Tajima et al。,2014 )还可以观察到次级相的纳米级域阴极发光(href="#bib30" rid="bib30" class=" bibr popnode"> Mendis et al。,2018 )。通过控制退火和引入添加剂(例如碱金属,Ag,Cd,Ge和Sb)来减少本体组成紊乱的系统方法已提高了器件效率,但VOC值仍保持在500-600 mV范围内( href="#bib22" rid="bib22" class=" bibr popnode">约翰逊等人,2014 ,href =“#bib27” rid =“ bib27” class =“ bibr popnode” > Kumar et al。,2015 ,href="#bib46" rid="bib46" class=" bibr popnode"> Su et al。,2015 ,href =“#bib49 “ rid =” bib49“ class =” bibr popnode“> Tiwari等人,2016 ,href="#bib37" rid="bib37" class=" bibr popnode"> Qi等人,2017 ,href="#bib18" rid="bib18" class=" bibr popnode">吉拉尔多(Giraldo)等人,2018 ,href =“#bib39” rid =“ bib39”类=“ bibr popnode”> Sai Gautam等人,2018 )。这些观察结果使我们的注意力从体积上转移到界面缺陷上,这是决定电压损失的关键因素,这一事实突出表明,对这些复杂材料的表面结构知之甚少。实验证据表明,了解这种结构的重要性涉及吸收体层的埋入结中的一部分,即Mo / CZTSSe和CZTSSe / CdS界面。例如,Haight及其同事从Mo背接触中剥离了CZTSSe电池,并机械地重新连接它们,从而实现了功率转换效率的大幅提高(href="#bib1" rid="bib1" class=" bibr popnode"> Antunez等人,2017a )。这是由于在热退火步骤期间Mo膜的部分硒化。但是,利用光发射光谱学提供的穿透深度研究CZTSSe / CdS边界非常具有挑战性(href="#bib4" rid="bib4" class=" bibr popnode">Bäret al。,2017 )。在这项工作中,我们首次采用亚微米级分辨率的能量过滤光电子显微镜(EF-PEEM)来检查CZTSSe薄膜的复杂且鲜为人知的表面电子结构。我们的研究集中在分子前驱物退火产生的薄膜上,该薄膜的特征在于在AM 1.5G照明下的高度结晶度和相纯度以及5.7%的功率转换效率(href =“#bib51” rid =“ bib51 “ class =” bibr popnode“> Tiwari等人,2017b )。光电发射图显示了二次电子发射的起始能量分布,我们根据局部有效功函数(LEWF)对其进行了合理化。 DFT超级单元计算支持对价带谱进行分析,从而在最突出的LEWF特征与CZTSSe主相之间建立了牢固的联系。光电发射领域还揭示了低LEWF的亚微米域,可作为光生电子的分流路径。局部价带谱显示这些光发射热点对应于Sn(S,Se)表面域。我们得出的结论是,这些传统的光谱和衍射技术无法检测到的表面域在器件的电压损耗中起着重要作用。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号