首页> 外文期刊>The journal of physical chemistry, B. Condensed matter, materials, surfaces, interfaces & biophysical >Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy
【24h】

Ultrafast Carrier Dynamics in CdSe Nanocrystals Determined by Femtosecond Fluorescence Upconversion Spectroscopy

机译:飞秒荧光上转换光谱法测定CdSe纳米晶体的超快载流子动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Femtosecond fluorescence upconversion has been utilized to study the band edge and deep trap emission dynamics of cadmium selenide (CdSe) nanocrystals{NC's) ranging in size from 27 to 72 A in diameter. Both the band edge rise time and decay show a direct correlation to NC size, and arise time that depends on excitation energy. Surface-oxidized and non-oxidized NC's display.the same band edge fluorescence decay kinetics. but the relative amplitudes of the short and long component~ differ. The deep trap emission that appears within 2 ps is attributed to ultrafast relaxation of a surface selenium dangling bond electron .to the valence band where it. combines radiatively with the initial photogenerated hole. By this process, the large amplitude of the band edge emission that is attributed to direct. electron/hole recombination is attenuated within the initial 2-6 ps. The long lifetime of the band edge emission originates from a triplet state, with an energy lying just below the lowest electronic level consistent with the "Dark Exciton". The extended deep trap emission arises from the relaxation of the excited-state conduction band electron to a surface-Iocalized hole or vice-versa. A new model is presented which describes these mechanisms for exciton relaxation in CdSe quantum dots.
机译:飞秒荧光上转换已被用于研究硒化镉(CdSe)纳米晶体(NC's)的直径为27至72 A的能带边缘和深陷阱发射动力学。频带边缘上升时间和衰减都显示与NC大小直接相关,并且上升时间取决于激励能量。表面氧化和非氧化NC的显示相同的带边荧光衰减动力学。但是短和长分量的相对幅度不同。出现在2 ps内的深陷阱发射归因于表面硒悬挂键电子超快弛豫到它所在的价带。与初始光生空穴辐射结合。通过该过程,带边缘发射的大幅度归因于直接。电子/空穴复合在最初的2-6 ps内衰减。频带边缘发射的长寿命源自三重态,其能量刚好低于与“暗激子”一致的最低电子能级。扩展的深陷阱发射源于激发态导带电子向表面盐化空穴的弛豫,反之亦然。提出了一个新模型,描述了CdSe量子点中激子弛豫的这些机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号