【24h】

NONPARAMETRIC HIERARCHICAL BAYES VIA SEQUENTIAL IMPUTATIONS

机译:顺序插补的非参数层次贝类

获取原文
获取原文并翻译 | 示例

摘要

We consider the empirical Bayes estimation of a distribution using binary data via the Dirichlet process. Let D(alpha) denote a Dirichlet process with alpha being a finite measure on [0, 1]. Instead of having direct samples from an unknown random distribution F from D(alpha), we assume that only indirect binomial data are observable. This paper presents a new interpretation of Lo's formula, and thereby relates the predictive density of the observations based on a Dirichlet process model to likelihoods of much simpler models. As a consequence, the log-likelihood surface, as well as the maximum likelihood estimate of c = alpha([0, 1]), is found when the shape of alpha is assumed known, together with a formula for the Fisher information evaluated at the estimate. The sequential imputation method of Kong, Liu and Wong is recommended for overcoming computational difficulties commonly encountered in this area. The related approximation formulas are provided. An analysis of the tack data of Beckett and Diaconis, which motivated this study, is supplemented to illustrate our methods. [References: 27]
机译:我们考虑通过Dirichlet过程使用二进制数据对分布进行经验贝叶斯估计。令D(alpha)表示Dirichlet过程,其中alpha是对[0,1]的有限度量。假设不是只有来自Dα的未知随机分布F的直接样本,而是假定只能观察到间接二项式数据。本文介绍了Lo公式的新解释,从而将基于Dirichlet过程模型的观测值的预测密度与更为简单的模型的可能性相关联。结果,当假定α的形状已知时,便找到了对数似然表面以及c = alpha([0,1])的最大似然估计,以及用于评估的Fisher信息的公式估计。建议使用Kong,Liu和Wong的顺序插补方法来克服该领域中常见的计算困难。提供了相关的近似公式。对Beckett和Diaconis的粘性数据的分析(该数据激发了这项研究的动机)得到了补充,以说明我们的方法。 [参考:27]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号