首页> 外文期刊>The Journal of Chemical Physics >CLASSICAL-QUANTUM CORRESPONDENCE IN THE REDFIELD EQUATION AND ITS SOLUTIONS
【24h】

CLASSICAL-QUANTUM CORRESPONDENCE IN THE REDFIELD EQUATION AND ITS SOLUTIONS

机译:修正方程的经典-量子对应关系及其解

获取原文
获取原文并翻译 | 示例
           

摘要

In a recent paper we showed the equivalence, under certain well-characterized assumptions, of Redfield's equations for the density operator in the energy representation with the Gaussian phase space ansatz for the Wigner function of Yan and Mukamel. The equivalence shows that the solutions of Redfield's equations respect a striking degree of classical-quantum correspondence, Here we use this equivalence to derive analytic expressions for the density matrix of the harmonic oscillator in the energy representation without making the almost ubiquitous secular approximation. From the elements of the density matrix in the energy representation we derive analytic expressions for Gamma(1)(n)(1/T-1(n)) and Gamma(2)(nm)(1/T-2(nm)), i.e., population and phase relaxation rates for individual matrix elements in the energy representation. Our results show that Gamma(1)(n)(t) = Gamma(1)(t) is independent of n; this is contrary to the widely held belief that Gamma(1)(n) is proportional to n. We also derive the simple result that Gamma(2)(nm)(t) = -mGamma(1)(t)/2, a generalization of the two-level system result Gamma(2) = Gamma(1)/2. We show that Gamma(1)(t) is the classical rate of energy relaxation, which has periodic modulations characteristic of the classical damped oscillator; averaged over a period Gamma(t) is directly proportional to the classical friction, gamma. An additional element of classical-quantum correspondence concerns the time rate of change of the phase of the off diagonal elements of the density matrix, omega(nm), a quantity which has received little attention previously. We find that omega(nm) is time-dependent, and equal to - mOmega(t), where Omega(t) is the rate of change of phase space angle in the classical damped harmonic oscillator. Finally, expressions for a collective Gamma(1)(t) and Gamma(2)(t) are derived, and shown to satisfy the relationship Gamma(2) = Gamma(1)/2. This familiar result, when applied to these collective rate constants, is seen to have a simple geometrical interpretation in phase space. (C) 1997 American Institute of Physics. [References: 20]
机译:在最近的一篇论文中,我们展示了在某些特定特征的假设下,用于能量表示的密度算子的Redfield方程与用于Yan和Mukamel的Wigner函数的高斯相空间ansatz的等价性。等价性表明Redfield方程的解遵循经典量子对应的惊人程度。在这里,我们使用这种等价性来导出能量表示中谐振子密度矩阵的解析表达式,而无需进行几乎普遍存在的长期近似。从能量表示中的密度矩阵元素中,我们得出Gamma(1)(n)(1 / T-1(n))和Gamma(2)(nm)(1 / T-2(nm)的解析表达式),即能量表示中单个矩阵元素的总体和相弛豫率。我们的结果表明,Gamma(1)(n)(t)= Gamma(1)(t)独立于n;这与普遍认为Gamma(1)(n)与n成正比的观点相反。我们还导出了简单结果Gamma(2)(nm)(t)= nm Gamma(1)(t)/ 2,这是两层系统结果Gamma(2)= Gamma(1)/ 2。我们证明Gamma(1)(t)是经典的能量弛豫率,它具有经典阻尼振荡器的周期性调制特性;在一段时间内的平均值Gamma(t)与经典摩擦系数gamma成正比。古典量子对应关系的另一个要素涉及密度矩阵的非对角线要素的相位的时间变化率ω(nm),该数量以前很少受到关注。我们发现omega(nm)与时间有关,等于 n-m Omega(t),其中Omega(t)是经典阻尼谐波振荡器中相空间角的变化率。最后,导出了集合Gamma(1)(t)和Gamma(2)(t)的表达式,并表示满足关系Gamma(2)= Gamma(1)/ 2。当将这些熟悉的结果应用于这些集合速率常数时,可以在相空间中进行简单的几何解释。 (C)1997美国物理研究所。 [参考:20]

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号