...
首页> 外文期刊>The American mineralogist >An atomic force microscopy study of diamond dissolution features: The effect of H_2O and CO_2 in the fluid on diamond morphology
【24h】

An atomic force microscopy study of diamond dissolution features: The effect of H_2O and CO_2 in the fluid on diamond morphology

机译:金刚石溶解特性的原子力显微镜研究:流体中H_2O和CO_2对金刚石形态的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Experimental data demonstrates that the resorption morphology of diamond greatly depends on the composition of the reacting fluid and can be used to constrain the composition of mantle fluids in diamond source areas and magmatic fluid in kimberlite magma. This requires a model that describes how different fluids interact with the diamond surface. This study uses atomic force microscopy (AFM) to quantitatively characterize the crystallographic orientation of micro-faces that form individual etch pits on diamond surfaces produced naturally in a kimberlite magma and experimentally in H_2O-rich and CO_2-rich fluids at 1150, 1250, and 1350 °C and 1 GPa. Dissolution features were examined on {111} diamond faces with the AFM scan areas ranging from 30 × 30 to 1 × 1 μm. The study shows that the extremely different resorption features developed on diamond surface during dissolution in H_2O- and CO_2-rich fluids, are formed by the same set of micro-faces with angles ?7, 11, 16, and 22°, corresponding to the {433}, {322}, {221}, and {321} faces, respectively. This suggests that diamond has similar dissolution rates in the same directions of the diamond lattice in both H_2O- and CO_2-rich fluid but that the mechanism of material removal is different. Reaction with H_2O-rich fluid develops regular features due to layer-by-layer carbon removal. In CO_2-rich fluid, deep etch pits with irregular walls form when dissolution is focused around the outcropping dislocations. The size and shape of the etch pits and their association with the outcropping dislocations depend on temperature and could be used to constrain the crystallization conditions of kimberlite magma. Natural kimberlite-induced resorption features indicate high H _2O:CO_2 ratios in kimberlitic fluid.
机译:实验数据表明,金刚石的吸收形态在很大程度上取决于反应液的组成,可用于限制金刚石源区的地幔流体和金伯利岩岩浆的岩浆流体的成分。这就需要一个描述不同流体如何与钻石表面相互作用的模型。这项研究使用原子力显微镜(AFM)来定量表征在金伯利岩岩浆中天然生成的金刚石表面上形成单个刻蚀坑的微面的晶体学取向,并在1150、1250和1350°C和1 GPa。在AFM扫描范围为30×30到1×1μm的{111}金刚石面上检查了溶出度。研究表明,在溶解于富含H_2O和CO_2的流体中,金刚石表面上形成的截然不同的吸收特征是由同一组微角为7、11、16和22°的微面形成的,对应于分别具有{433},{322},{221}和{321}面。这表明金刚石在富含H_2O和CO_2的流体中,在与金刚石晶格相同的方向上具有相似的溶解速率,但是材料去除的机理不同。由于逐层去除碳,与富含H_2O的流体发生反应具有规律性。在富含CO_2的流体中,当溶解集中在露头位错附近时,会形成壁不规则的深腐蚀坑。刻蚀坑的大小和形状及其与露头位错的关系取决于温度,可用于限制金伯利岩岩浆的结晶条件。天然金伯利岩诱导的吸收特征表明金伯利岩液中高的H _2O:CO_2比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号