首页> 外文期刊>Technology and health care: official journal of the European Society for Engineering and Medicine >Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.
【24h】

Multiscale computational and experimental approaches to elucidate bone and ligament mechanobiology using the ulna-radius-interosseous membrane construct as a model system.

机译:使用尺骨-radi骨-骨间膜构建体作为模型系统的多尺度计算和实验方法,以阐明骨骼和韧带的力学生物学。

获取原文
获取原文并翻译 | 示例

摘要

An in vivo axial loading model of the rat ulna was developed almost two decades ago. As a minimally invasive model, it lends itself particularly well for the study of functional adaptation in bone and the interosseous membrane, a ligament spanning between the radius and ulna. The objective of this paper is to review computational and experimental approaches to elucidate its applicability for the study of multiscale bone and ligament mechanobiology. Specifically, this review describes approaches, including i) measurement of strains on bone tissue surfaces, ii) development of a three-dimensional finite element (FE) mesh of a skeletally mature rat ulna, iii) parametric study of the relative influence of mechanical constants and materials properties on computational model predictions, iv) comparison of experimental and computational strain distribution data, and analysis of the radius and interosseous membrane (IOM) ligament's effect on axial load distribution through the ulna of the rat, and v) the effect of mechanical loading on transport through the IOM using different molecular weight fluorescent tagged dextrans. In the first stage of the study a computational stress analysis was performed after applying a 20 N single static load at the ulnar extremities, corresponding to values of experimental strain gauge measurements. To account for the anisotropy of the bone matrix, transverse isotraopic, elastic material properties were applied. In a parametric study, we analyzed the qualitative effect of different material properties on the global load and displacement behavior of the computational model. In a second stage, the same ulnar model used in the parametric study was extended to account for the interaction between the ulna, radius and IOM. The three-dimensional FE model of the rat forelimb confirms the influence of ulnar curvature on its deformation and underscores the influence of the radius and IOM on strain distribution through the ulna. The mode of strain, {i.e.} compression or tension, and strain distribution along the bone diaphysis correspond to those measured experimentally in vivo. When the radius and, indirectly, the IOM were loaded, the bone deformation shifted distally with respect to the diaphysis. In a final stage, the aforementioned ulnar model was used to study the permeability of fluorescent tagged dextrans with different molecular weights in the presence and absence of ulnar compression. Small molecular weight dextrans (3,000 Da) were distributed throughout the IOM in the absence of as well as after mechanical loading. Interestingly, no gradient in distribution was observed in either case. In contrast, very high molecular weight dextrans (1,000,000 Da) were observed only within vascular and lymphatic spaces in the bone (as well as periosteum) and IOM, both in the absence of and after the application of mechanical loading via end load compression. Between the two extremes, both 10 and 70 kDa tracers were distributed throughout the IOM after application of compressive loading. Loading appears to dissipate the steep gradient of fluorescent 70 kDa tracer observed along the lateral surface of the unloaded IOM and its insertion into the radius and ulna. Hence, this combined computational and experimental analysis of the ulna compression model provides new insight into multiscale mechanobiology of the ulna-radius-interosseous membrane construct and may provide new avenues for elucidation of ligament's remarkable structure-function relationships.
机译:大鼠尺骨的体内轴向负荷模型是近二十年前开发的。作为一种微创模型,它特别适合于研究骨骼和骨间膜(横跨the骨和尺骨之间的韧带)的功能适应性。本文的目的是综述计算和实验方法,以阐明其在多尺度骨和韧带力学生物学研究中的适用性。具体而言,本综述介绍了一些方法,包括:i)测量骨骼组织表面上的应变; ii)骨骼成熟大鼠尺骨的三维有限元(FE)网格的开发; iii)机械常数相对影响的参数研究和材料特性在计算模型预测中的应用; iv)实验和计算应变分布数据的比较,以及os骨和骨间膜(IOM)韧带对通过大鼠尺骨的轴向负荷分布的影响的分析,以及v)机械的影响使用不同分子量的荧光标记的右旋糖酐通过IOM转运。在研究的第一阶段,在尺骨末端施加20 N的单个静载荷后进行了计算应力分析,这与实验应变仪测量值相对应。为了解决骨基质的各向异性,应用了横向等距,弹性材料特性。在参数研究中,我们分析了不同材料特性对计算模型的整体载荷和位移行为的定性影响。在第二阶段,扩展了用于参数研究的相同尺骨模型,以说明尺骨,radius骨和IOM之间的相互作用。大鼠前肢的三维有限元模型证实了尺骨弯曲对其变形的影响,并强调了半径和IOM对通过尺骨的应力分布的影响。应变的模式,即压缩或拉伸,以及沿骨骨干的应变分布对应于体内实验测量的那些。当半径以及间接加载IOM时,骨骼变形相对于骨干向远端移动。在最后阶段,上述尺骨模型用于研究存在和不存在尺骨压迫时不同分子量的荧光标记葡聚糖的渗透性。在不存在机械负载的情况下以及在机械负载之后,小分子量的右旋糖酐(3,000 Da)均分布在整个IOM中。有趣的是,在两种情况下均未观察到分布梯度。相反,在不存在和通过末端载荷压缩施加机械载荷的情况下和之后,仅在骨骼(以及骨膜)和IOM的血管和淋巴间隙内观察到非常高分子量的葡聚糖(1,000,000 Da)。在这两个极端之间,施加了压缩载荷后,IOM分别分布了10 kDa和70 kDa示踪剂。加载似乎消散了沿未加载IOM侧面观察到的70 kDa荧光示踪剂的陡峭梯度,并将其插入到radius骨和尺骨中。因此,这种尺骨压缩模型的计算和实验分析相结合,为尺骨-radi骨-骨间膜构造的多尺度力学生物学提供了新的见识,并可能为阐明韧带与众不同的结构-功能关系提供新的途径。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号